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~ Part 1 : Text Classification

We have 3 binary classification tasks, to predict if an article is labelled as InfoTheory, CompVis or Ma
to any number of classes or even none of them. So basically we have to test each article for all the th

The text to be classified is stored in the column termed Abstract and the 3 classes belong to the colu

1. InfoTheory
2. CompVis
3. Math

These 3 tasks will be tested using 2 different algorithms, one based on statistical approach and one |
as:

1. Statistical Classifier - SVM

Considering the algorithms discussed in tutorials, | short listed SVM and Logistics Regression.

As per this blog on Medium, SVM is a better choice than the Logistic Regression for both un-structure
author claims SVM isn't as prone to over-fitting as is Logistic Regression. Lastly, as observed in the tt
couldn’t predict very well when exposed to an imbalanced dataset (or skewed distribution).

Thus | decided to go with SVM for the statistical classification.

2. Recurrent Neural Network - Simple RNN

For the RNN based approach | decided to go with Simple RNN.

Additionally the 3 tasks have to be tested against 2 different preprocessing techniques. | am choosin
process the text :

1. WordNetLemmatizer from NLTK
2. Spacy (preprocessing pipeline)

As per this article, Spacy tends to be much faster than NLTK and also supports word vectors. Given tl
sentence (unlike NLTK), it would be interesting to see how these two pipelines compare with each ott
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The nlp pipeline from Spacy is a rigorous approach involving POS tagging, dependency labelling as w
test the entire pipeline, the size of our dataset limits us from running the whole pipeline. Therefore | d
restrict it to tokenisation, POS tagging and lemmatisation.

Lastly the 3 tasks have to be tained on two separte datasets. Therefore we first train our model on fir:
the entire dataset (approximately 54000 records)

Having briefed you about my plan, we proceed to the coding part wherein each configuration would b
and recall score along with a precision-recall curve.

As | am using Google Colab for this assignment, we mount the drive to avoid uploading entire datase

from google.colab import drive
drive.mount('/content/drive"')

Mounted at /content/drive

v Statiscal Approach

v Importing Libraries

Here we import the python libraies that we use in this notebook. Broadly speaking we have used Nurr
modules from NLTK, and SkLearn.

Numpy was used for data transofrmation and Pandas for loading data and (selecting rows from the ¢
processing based on pre-defined functions. SkLEarn was used for model training and evalusation. La
the model performance

gmatplotlib inline

from nltk.corpus import stopwords

from nltk import word tokenize

from nltk.tokenize import wordpunct tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature extraction.text import TfidfVectorizer

from sklearn.metrics import precision score, recall score, fl score, average precisio
from sklearn.svm import LinearSVC, SVC

import pandas as pd

import numpy as np

import spacy
# Initialize spacy 'en' model, keeping only tagger component needed for lemmatization
nlp = spacy.load('en', disable=['parser', 'ner'])
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from sklearn.metrics import precision recall curve
from sklearn.metrics import plot precision recall curve
import matplotlib.pyplot as plt

/usr/local/lib/python3.7/dist-packages/ pytest/mark/structures.py:426: Deprecatit
@attr.s(cmp=False, hash=False)
/usr/local/lib/python3.7/dist-packages/jsonschema/compat.py:6: DeprecationWarnine
from collections import MutableMapping, Sequence # noga
/usr/local/lib/python3.7/dist-packages/jsonschema/compat.py:6: DeprecationWarnine
from collections import MutableMapping, Sequence # noga
/usr/local/lib/python3.7/dist-packages/catalogue.py:138: DeprecationWarning: Sel«
for entry point in AVAILABLE ENTRY POINTS.get(self.entry point namespace, []):
/usr/local/lib/python3.7/dist-packages/catalogue.py:138: DeprecationWarning: Sel«
for entry point in AVAILABLE ENTRY POINTS.get(self.entry point namespace, []):
/usr/local/lib/python3.7/dist-packages/catalogue.py:126: DeprecationWarning: Sel«
for entry point in AVAILABLE ENTRY POINTS.get(self.entry point namespace, []):
/usr/local/lib/python3.7/dist-packages/catalogue.py:138: DeprecationWarning: Sel«
for entry point in AVAILABLE ENTRY POINTS.get(self.entry point namespace, []):

v Loading Data

We create 3 dataframes, two for training each - one with first 100 records (df_train_1) and the other w
And one for the test set which again has all the records as in the file.

import pandas as pd

# Load the dataset into a pandas dataframe.

df train 2 = pd.read csv("/content/drive/Shareddrives/fit5212-s1-2021-tutorials/Al/ax
df train 1 = df train 2[:1000]

df test = pd.read csv("/content/drive/Shareddrives/fit5212-s1-2021-tutorials/Al/axcs

# Report the number of sentences.

print('Number of sentences in train-set 1: {:,}\n'.format(df train 1l.shape[0]))
print('Number of sentences in train-set 2: {:,}\n'.format(df train 2.shape[0]))
print('Number of sentences in test-set: {:,}\n'.format(df test.shape[0]))

# Report proportions

print('Proportion of 0 class in InfoTheory in train-set 2 : {:.4f}\n'.format(df train
print('Proportion of 0 class in CompVis in train-set 2 : {:.4f}\n'.format(df train 2.
print('Proportion of 0 class in Math in train-set 2 : {:.4f}\n'.format(df train 2.loc

Number of sentences in train-set 1: 1,000

Number of sentences in train-set 2: 54,731

Number of sentences in test-set: 19,678

Proportion of 0 class in InfoTheory in train-set 2 : 0.8075
Proportion of 0 class in CompVis in train-set 2 : 0.9594
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Proportion of 0 class in Math in train-set 2 : 0.6944

v Data Extraction

Now, for each dataset (2 train sets and 1 test set) we extract the the columns:

1. Abstract
2. InfoTheory
3. CompVis
4. Math

Wherein the Abstract is used for Docs to be trained and other 3 as labels.

# extract Docs and Labels

trainDocsl = df train 1l.Abstract.tolist()
trainInfoTheoryLabelsl = df train l.InfoTheory.tolist()
trainCompVisLabelsl = df train 1.CompVis.tolist()
trainMathLabelsl = df train 1.Math.tolist()

trainDocs2 = df train 2.Abstract.tolist()
trainInfoTheoryLabels2 = df train 2.InfoTheory.tolist()
trainCompVisLabels2 = df train 2.CompVis.tolist()
trainMathLabels2 = df train 2.Math.tolist()

testDocs = df test.Abstract.tolist()
testInfoTheorylLabels = df test.InfoTheory.tolist()

testCompVisLabels = df test.CompVis.tolist()
testMathLabels = df test.CompVis.tolist()

v Text Preprocessing

v Tokenisation & Lemmatisation

Here | define two LemmaTokenizer, one based on NLTK and the other on Spacy. The idea behind thes
already been discussed in the first Markdown Cell. Please refer to that for detailed explanaion. Here v

the input and returns the Lemmatised form.

class LemmaTokenizerWordnet(object):
def  init (self):
self.wnl=WordNetLemmatizer/()
def call (self,doc):
return [self.wnl.lemmatize(t) for t in word tokenize(doc)]

class LemmaTokenizerSpacy(object):
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def call_ (self,doc):

trydoc = nlp(doc)
return [token.lemma for token in trydoc]

v Vectorisation

Similarly we created two separate vectorizer, one for NLTK Lematizer and the other for Spacy Lemma
transforms the tokenised texts into vectors.

vectorizerl = TfidfVectorizer(analyzer='word', input='content',
lowercase=True,
token pattern='(?u)\\b\\w\\w+\\b',
min_df=3,
ngram range=(1,2),
tokenizer=LemmaTokenizerWordnet())

vectorizer2 = TfidfVectorizer(analyzer='word', input='content',
lowercase=True,
token pattern='(?u)\\b\\w\\w+\\b',
min df=3,
ngram range=(1,2),
tokenizer=LemmaTokenizerSpacy())

v Model Selection

This code is just for model selection. As already discussed in the first Markdown Cell, we use the Line
for detailed discussion. Focussing on the code here, the variable ‘clf' stores the model/classifier nam

# this variable stores the model name
clf = LinearSVC()

import nltk

nltk.download( 'punkt')
nltk.download( 'wordnet')
nltk.download('stopwords')

[nltk data] Downloading package punkt to /root/nltk data...
[nltk data] Unzipping tokenizers/punkt.zip.

[nltk data] Downloading package wordnet to /root/nltk data...
[nltk data] Unzipping corpora/wordnet.zip.

[nltk data] Downloading package stopwords to /root/nltk data...
[nltk data] Unzipping corpora/stopwords.zip.

True

v Pipeline
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Having defined all the preprocessing tasks, | combine them into a user-defined functions that can als

text-classification.
This function takes 4 input parameters:

1. Training Data (Docs)
2. Training Labels

3. Test Data

4. Test Labels

5. Choice of Vectoriser

Depending upon the inputs, we fit and transform the training data using the vectorizer and then same

Plus the labels are also transformed using numpy arrays.

Then the classifier (LinearSVC) selected here is used to train the model.

Once trained, this model is used to make predictions for the test set and the model performance is pr

As discussed above the metrics chosen are F1, Precision and Recall with a Precision-Recall curve.

def text classification(trainDocs, trainLabels, testDocs, testLabels, vectorizer):

X_train=vectorizer.fit transform(trainDocs)
y_train=np.asarray(trainLabels)

# Use the same vectorizer to transform the test set
X_test=vectorizer.transform(testDocs)
y_test=np.asarray(testLabels)

clf.fit(x _train, y train)
y_predict=clf.predict(x test)

recall=recall score(y test,y predict,average='macro')
precision=precision score(y_test,y predict,average='macro')
flscore=fl score(y_ test,y predict,average='macro')

average precision = average precision score(y_test, y predict)

print( 'Macro Fl1 score:'+ str(flscore))
print( 'Macro Precision: '+ str(precision))
print('Macro Recall: '+ str(recall))

disp = plot precision recall curve(clf, x test, y test)

disp.ax_.set_title('2-class Precision-Recall curve: '
'AP={0:0.2f}"'.format(average precision))

v Implementation

Now we test all the configurations using the pipeling defined above.

We proceed in the manner:
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1. InfoTheory Classification

1. Train Set 1, NLTK
2. Train Set 1, Spacy
3. Train set 2, NLTK
4. Train set 2, Spacy
2. ComVis Classification

1. Train Set 1, NLTK

2. Train Set 1, Spacy

3. Train set 2, NLTK

4. Train set 2, Spacy
3. Math Classification

1. Train Set 1, NLTK
2. Train Set 1, Spacy
3. Train set 2, NLTK
4. Train set 2, Spacy

Thereby we begin with

1.1 InfoTheory Classification with training set 1 and NLTK preprocessing.

text classification(trainDocsl, trainInfoTheoryLabelsl, testDocs, testInfoTheoryLabel

Macro F1 score:0.45373221302681077
Macro Precision: 0.908432080557392
Macro Recall: 0.5020741150442478

2-class Precision-Recall curve: AP=0.19
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0.2 1 = LinearSVC (AP = 0.40)

T T T T T T
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Recall

1.2 InfoTheory Classification with training set 1 and Spacy Preprocessing

text classification(trainDocsl, trainInfoTheoryLabelsl, testDocs, testInfoTheoryLabel
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Macro F1 score:0.44941242305540013

Macro Precision:

Macro Recall: 0.5
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification.py:1272: 1

_warn_prf(average, modifier, msg start, len(result))

2-class Precision-Recall curve: AP=0.18

0.40812074397804654
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1.3 InfoTheory Classification with training set 2 and NLTK Preprocessing
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text classification(trainDocs2, trainInfoTheoryLabels2, testDocs, testInfoTheoryLabel

Macro F1l score:0.9253837329904628

Macro Precision:
Macro Recall:

0.9451900599705472
0.9083372520531612

2-class Precision-Recall curve: AP=0.80
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1.4 InfoTheory Classification with training set 2 and Spacy Preprocessing
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https://colab.research.google.com/drive/1Z44h3610KY O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true

8/99



25/04/2021

code_31125301.ipynb - Colaboratory

Macro Fl score:0.9249162947966643

Macro Precision:
Macro Recall:
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05
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2.1 CompVis Classification with training set 1 and NLTK Preprocessing

0.9448837857618397
0.9077530253343515

2-class Precision-Recall curve: AP=0.80
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text classification(trainDocsl, trainCompVisLabelsl, testDocs, testCompVisLabels, vec

Macro F1 score:0.4710783786689603

Macro Precision:

Macro Recall: 0.5
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification.py:1272: 1

_warn_prf(average, modifier, msg start, len(result))
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2.2 CompVis Classification with training set 1 and Spacy Preprocessing

2-class Precision-Recall curve: AP=0.11
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Macro F1l score:0.4710783786689603

Macro Precision: 0.44531964630551885

Macro Recall: 0.5

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification.py:1272: 1
_warn_prf(average, modifier, msg start, len(result))

2-class Precision-Recall curve: AP=0.11
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2.3 CompVis Classification with training set 2 and NLTK Preprocessing

text classification(trainDocs2, trainCompVisLabels2, testDocs, testCompVisLabels, vec

Macro F1 score:0.917978604149698
Macro Precision: 0.9641612700015845
Macro Recall: 0.8821254730624326

2-class Precision-Recall curve: AP=0.76
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= LinearSVC (AP = 0.95)
0.0 0.2 04 06 0.8 10
Recall

2.4 CompVis Classification with training set 2 and Spacy Preprocessing

text classification(trainDocs2, trainCompVisLabels2, testDocs, testCompVisLabels, vec
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Macro F1l score:0.9217483642082678
Macro Precision: 0.9668036385053989
Macro Recall: 0.8865073324942189

2-class Precision-Recall curve: AP=0.77

10 1

0.8 1

0.6 1

Precision

0.4 1

0.2 1
= LinearSVC (AP = 0.95)

3.1 Math Classification with training set 1 and NLTK Preprocessing

text classification(trainDocsl, trainMathLabelsl, testDocs, testMathLabels, vectorize

Macro F1l score:0.46770179614801993
Macro Precision: 0.4446558995988067
Macro Recall: 0.49326714595458176

2-class Precision-Recall curve: AP=0.11
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3.2 Math Classification with training set 1 and Spacy Preprocessing

text classification(trainDocsl, trainMathLabelsl, testDocs, testMathLabels, vectorize
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Macro Fl score:0.47011445527766005
Macro Precision: 0.44717741935483873
Macro Recall: 0.49553172475424484

2-class Precision-Recall curve: AP=0.10
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0.6 1

Precision

0.4 1

3.3 Math Classification with training set 2 and NLTK Preprocessing
| 1 I

text classification(trainDocs2, trainMathLabels2, testDocs, testMathLabels, vectorize

Macro F1 score:0.3974580942036528
Macro Precision: 0.4373174079613202
Macro Recall: 0.3695502391038891

2-class Precision-Recall curve: AP=0.10
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3.4 Math Classification with training set 2 and Spacy Preprocessing

text classification(trainDocs2, trainMathLabels2, testDocs, testMathLabels, vectorize
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Macro F1l score:0.39886294677979656
Macro Precision: 0.43836588361917445
Macro Recall: 0.3717937566938856

2-class Precision-Recall curve: AP=0.10

10

~ RNN Approach

Now we create a Simple RNN to repeat the same process for InfoTheory, CompVis and Math Classific

021 | |
~ Importing Libraries

We load relevent modules for RNN model.

import torch
from torchtext.legacy import data
from torchtext.legacy.data import TabularDataset

v Loading Data

We begin by definig how the data should be processed. We will be using TexT field for Abstract and

SEED = 1234

torch.manual seed(SEED)
torch.backends.cudnn.deterministic = True

TEXT = data.Field(sequential=True, tokenize 'spacy', lower=True)
tokenize = lambda x: x.split()

TEXT = data.Field(sequential=True, tokenize = tokenize, lower=True) #in case you want

LABEL = data.LabelField(dtype = torch.float, use vocab=False, preprocessing=int)
Using the TabularDataset we read our data in csv format. The two files are loaded as train and test se¢

tv_datafields = [("ID", None),
("URL", None),
("Date" ,None),
("Title", None),
("InfoTheory", LABEL),
("CompVis", LABEL),
("Math", LABEL),
("Abstract", TEXT), ]
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train data, test data = TabularDataset.splits(
path='cola public/for torch text',6 train='in domain train.tsv',
path='/content/drive/Shareddrives/fit5212-s1-2021-tutorials/Al"

#

Now we split the training data into train and validation sets.

train data, valid data = train data.split(split ratio=0.8)
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fields=tv_datafields)

v Vocabulary and Interator

, train='axcs trai

We pick the most common 5400 words from our data and create a look up table for our model. Lastly

trainig and evaluation.

MAX VOCAB SIZE = 5400

TEXT.build vocab(train data, max size = MAX VOCAB SIZE)

#LABEL.build vocab(train data)

BATCH _SIZE = 15

device = torch.device('cuda' if torch.cuda.is available() else 'cpu')

train iterator, valid iterator, test_ iterator

(train data, valid data, test data),
batch size = BATCH_SIZE,

device = device,

sort _key = lambda x: len(x.Abstract),
sort within batch = False)

batch = next(train iterator. iter ())
batch

[torchtext.legacy.data.batch.Batch of size 15]

data.BucketIterator.splits(

[ .InfoTheory]:[torch.cuda.FloatTensor of size 15 (GPU 0)]

[ .CompVis]:[torch.cuda.FloatTensor of size 15 (GPU 0)]
[ .Math]:[torch.cuda.FloatTensor of size 15 (GPU 0)]
[

.Abstract]:[torch.cuda.LongTensor of size 306x15 (GPU 0)]

v Building Model

Creating a model with 3 layers - Embedding, RNN and Linear.

import torch.nn as nn

https://colab.research.google.com/drive/1Z44h3610K’Y O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true
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class RNN(nn.Module):
def init (self, input dim, embedding dim, hidden dim, output dim):

super(). init ()
self.embedding = nn.Embedding(input dim, embedding dim)
self.rnn = nn.RNN(embedding dim, hidden_dim)
self.fc = nn.Linear(hidden dim, output dim)
def forward(self, text):
#text = [sent len, batch size]
embedded = self.embedding(text)
#embedded = [sent len, batch size, emb dim]
output, hidden = self.rnn(embedded)

#output = [sent len, batch size, hid dim]
#hidden [1, batch size, hid dim]

assert torch.equal(output[-1,:,:], hidden.squeeze(0))

return self.fc(hidden.squeeze(0))

In the next cell we set dimensions for each of the layers.

INPUT DIM = len(TEXT.vocab)
EMBEDDING DIM = 100

HIDDEN DIM = 256

OUTPUT DIM = 1

model = RNN(INPUT DIM, EMBEDDING DIM, HIDDEN DIM, OUTPUT DIM)

A fucntion to tell us the number of parameters in the model.

def count parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires grad)

print (f'The model has {count parameters(model):,} trainable parameters')

The model has 632,105 trainable parameters
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v Training the Model

We firat create an nntimizer and then a lnss fiinction And we see if the madel can he nlaced on GPI I

import torch.optim as optim

optimizer = optim.SGD(model.parameters(), lr=le-3)
# loss function
criterion = nn.BCEWithLogitsLoss()

#

model = model.to(device)
criterion = criterion.to(device)

Create a function compute accuracy.

def binary accuracy(preds, y):

Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8

#round predictions to the closest integer

rounded preds = torch.round(torch.sigmoid(preds))

correct = (rounded preds == y).float() #convert into float for division
acc = correct.sum() / len(correct)

return acc

v InfoTheory Classification

We first train the model for classfying if the Abstract falls in InfoTheory Label or not.

Train function that iterates over all examples one batch at a time.

def train(model, iterator, optimizer, criterion):

epoch loss = 0
epoch acc = 0

model.train()

for batch in iterator:
optimizer.zero grad()
predictions = model (batch.Abstract).squeeze(1l)
loss = criterion(predictions, batch.InfoTheory)

acc = binarv accuracvinredictions. batch.TnfoTheorwv)

https://colab.research.google.com/drive/1Z44h3610K’Y O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true
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loss.backward()
optimizer.step()

epoch loss += loss.item()
epoch acc += acc.item()

D O 1

return epoch loss / len(iterator), epoch acc / len(iterator)

Evaluate function is similar to rain except it does not update the parameters.

def evaluate(model, iterator, criterion):

epoch loss = 0
epoch acc = 0

model.eval()
with torch.no grad():

for batch in iterator:

predictions = model (batch.Abstract).squeeze(1l)

loss = criterion(predictions, batch.InfoTheory)

acc = binary accuracy(predictions, batch.InfoTheory)

epoch loss += loss.item()
epoch acc += acc.item()

return epoch loss / len(iterator), epoch acc / len(iterator)

A function to tell us how long each epoch takes

import time

def epoch time(start time, end time):
elapsed time = end time - start time
int (elapsed time / 60)

elapsed mins

elapsed_secs
return elapsed mins, elapsed secs

Training model for multiple epochs.

N RDNOAHUQ = R

int(elapsed time - (elapsed mins * 60))

https://colab.research.google.com/drive/1Z44h3610K’Y O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true

17/99



25/04/2021

N Lruvewno g

code_31125301.ipynb - Colaboratory

best valid loss = float('inf')

for epoch in range(N_EPOCHS):

start time = time.time()

train loss, train_acc
valid loss, valid acc

end time = time.time()

train(model, train iterator, optimizer, criterion)
evaluate(model, valid iterator, criterion)

epoch mins, epoch secs = epoch time(start time, end time)

if valid loss < best valid loss:
best valid loss = valid loss
torch.save(model.state dict(),

'RNN_model.pt')

print (f'Epoch: {epoch+1:02} | Epoch Time: {epoch mins}m {epoch secs}s')
.3f} | Train Acc: {train acc*100:.2f}%")

print (f'

print(f'

Epoch:

Epoch:

Epoch:

Epoch:

Epoch:

\tTrain Loss: {train loss:
\t Val. Loss: {valid loss:

01 | Epoch Time: Om 32s
Train Loss: 0.498 | Train

Val. Loss: 0.554 | Val.
02 | Epoch Time: Om 32s

Train Loss: 0.493 | Train
Val. Loss: 0.531 | Val.

03 | Epoch Time: Om 32s
Train Loss: 0.492 | Train
Val. Loss: 0.521 | Val.

04 | Epoch Time: Om 32s

Train Loss: 0.492 | Train
Val. Loss: 0.514 | Val.

05 | Epoch Time: Om 32s
Train Loss: 0.492 | Train
Val. Loss: 0.508 | Val.

L3} |

Acc:
Acc:

Acc:
Acc:

Acc:
Acc:

Acc:
Acc:

Acc:
Acc:

80.
76.

80.
78.

80.
79.

80.
80.

80.
80.

Val. Acc:

18%

80%

47%
72%

54%
62%

60%
04%

60%
27%

model.load state dict(torch.load('RNN model.pt'))

{valid acc*100:.2f}%")

test loss, test acc = evaluate(model, test iterator, criterion)
print(f'Test Loss: {test loss:.3f} | Test Acc: {test _acc*100:.2f}%"')

Test Loss: 0.509 | Test Acc: 81.08%

y_predict =
y test = []

model.eval()

[]

with torch.no grad():
for batch in test iterator:

nredictinna = mndel (hatech Ahatract) armieezal 1)
https://colab.research.google.com/drive/1Z44h3610K’Y O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true
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rounded preds = torch.round(torch.sigmoid(predictions))
y_predict += rounded preds.tolist()

y_test += batch.InfoTheory.tolist()

#acc = binary accuracy(predictions, batch.label)

# from sklearn.metrics import precision score, recall score, fl score, accuracy_ score
# import numpy as np

y_predict = np.asarray(y_predict)
y_test = np.asarray(y_test)

recall=recall score(y_ test,y predict,average='macro')
precision=precision score(y_ test,y predict,average='macro')
flscore=fl score(y test,y predict,average='macro')
accuracy=accuracy_ score(y_ test,y predict)

average precision = average precision score(y_test, y predict)

print('Macro Precision: '+ str(precision))
print('Macro Recall: '+ str(recall))

print('Macro Fl1 score:'+ str(flscore))
print('Accuracy: '+ str(accuracy))

# disp = plot precision recall curve(model, test data, y test)

# disp.ax .set_title('2-class Precision-Recall curve:
# 'AP={0:0.2f}'.format(average precision))

Macro Precision: 0.553917480084759
Macro Recall: 0.5045978842494184
Macro F1l score:0.466657721960156
Accuracy: 0.8108039434901921

v CompVis Classification

We train the model for classfying if the Abstract falls in CompVis Label or not.

def train(model, iterator, optimizer, criterion):

epoch loss = 0
epoch acc = 0

model.train()
for batch in iterator:
optimizer.zero grad()

predictions = model(batch.Abstract).squeeze(1l)

https://colab.research.google.com/drive/1Z44h3610K’Y O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true 19/99
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loss = criterion(predictions, batch.CompVis)
acc = binary accuracy(predictions, batch.CompVis)
loss.backward()
optimizer.step()

epoch loss += loss.item()
epoch acc += acc.item()

return epoch loss / len(iterator), epoch acc / len(iterator)

evaluate(model, iterator, criterion):

epoch loss = 0
epoch acc = 0

model.eval()
with torch.no grad():
for batch in iterator:
predictions = model (batch.Abstract).squeeze(l)
loss = criterion(predictions, batch.CompVis)
acc = binary accuracy(predictions, batch.CompVis)

epoch loss += loss.item()
epoch _acc += acc.item()

return epoch loss / len(iterator), epoch acc / len(iterator)

N_EPOCHS = 5

best valid loss = float('inf')

for epoch in range(N_EPOCHS):

start time = time.time()

train_loss, train_acc

valid loss, valid acc
end_time = time.time()

epoch mins, epoch secs = epoch time(start time, end time)

https://colab.research.google.com/drive/1Z44h3610K’Y O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true
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evaluate(model, valid iterator, criterion)
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if valid loss < best valid loss:
best valid loss = valid loss
torch.save(model.state dict(), 'RNN model.pt')

print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch mins}m {epoch secs}s')
print (f'\tTrain Loss: {train loss:.3f} | Train Acc: {train acc*100:.2f}%"')
print(f'\t Val. Loss: {valid loss:.3f} | Val. Acc: {valid acc*100:.2£f}%"')

Epoch: 01 | Epoch Time: Om 32s
Train Loss: 0.200 | Train Acc: 95.24%
Val. Loss: 0.360 | Val. Acc: 92.85%
Epoch: 02 | Epoch Time: Om 32s
Train Loss: 0.183 | Train Acc: 95.74%
Val. Loss: 0.301 | Val. Acc: 94.87%
Epoch: 03 | Epoch Time: Om 32s
Train Loss: 0.180 | Train Acc: 95.85%
Val. Loss: 0.265 | Val. Acc: 95.67%
Epoch: 04 | Epoch Time: Om 32s
Train Loss: 0.178 | Train Acc: 95.88%
Val. Loss: 0.236 | Val. Acc: 95.91%
Epoch: 05 | Epoch Time: Om 32s
Train Loss: 0.176 | Train Acc: 95.90%
Val. Loss: 0.218 | Val. Acc: 96.00%

model.load state dict(torch.load('RNN model.pt'))

test loss, test acc = evaluate(model, test iterator, criterion)
print(f'Test Loss: {test loss:.3f} | Test Acc: {test acc*100:.2£f}%"')

Test Loss: 0.385 | Test Acc: 89.02%

y predict = []
y _test = []

model.eval()
with torch.no grad():
for batch in test iterator:
predictions = model (batch.Abstract).squeeze(1l)
rounded preds = torch.round(torch.sigmoid(predictions))
y_predict += rounded preds.tolist()
y _test += batch.InfoTheory.tolist()
#acc = binary accuracy(predictions, batch.label)

Let's see how the model predicted articles for CompVis Class

y_predict = np.asarray(y_predict)
y_test = np.asarray(y_test)

recall=recall score(y test,y predict,average='macro')
precision=precision_ score(y_ test,y predict,average='macro')
https://colab.research.google.com/drive/1Z44h3610K’Y O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true 21/99
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flscore=fl score(y_ test,y predict,average='macro')
accuracy=accuracy_ score(y test,y predict)

average precision = average precision score(y_test, y predict)
print('Macro Precision: '+ str(precision))

print('Macro Recall: '+ str(recall))

print('Macro Fl1 score:'+ str(flscore))
print('Accuracy: '+ str(accuracy))

Macro Precision: 0.5331342145399085
Macro Recall: 0.5000897724305043
Macro Fl score:0.44989700119778114
Accuracy: 0.816038215265779

+ Math Classification

Lastly we train the model to see if the Abstract falls in Math class or not.

def train(model, iterator, optimizer, criterion):

epoch loss = 0
epoch acc = 0

model.train()

for batch in iterator:
optimizer.zero grad()
predictions = model (batch.Abstract).squeeze(1l)
loss = criterion(predictions, batch.Math)
acc = binary accuracy(predictions, batch.Math)
loss.backward()
optimizer.step()

epoch loss += loss.item()
epoch acc += acc.item()

return epoch loss / len(iterator), epoch acc / len(iterator)

def evaluate(model, iterator, criterion):

epoch loss = 0
epoch acc = 0

——a_n PR
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with torch.no grad():
for batch in iterator:
predictions = model (batch.Abstract).squeeze(1l)
loss = criterion(predictions, batch.Math)
acc = binary accuracy(predictions, batch.Math)

epoch loss += loss.item()
epoch acc += acc.item()

return epoch loss / len(iterator), epoch acc / len(iterator)

N_EPOCHS = 5
best valid loss = float('inf')
for epoch in range(N _EPOCHS):

start time = time.time()

train loss, train acc = train(model, train iterator, optimizer, criterion)

valid loss, valid acc evaluate(model, valid iterator, criterion)

end time = time.time()
epoch mins, epoch secs = epoch time(start time, end time)

if valid loss < best valid loss:
best valid loss = valid loss
torch.save(model.state dict(), 'RNN model.pt')

print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch mins}m {epoch secs}s')
print (f'\tTrain Loss: {train loss:.3f} | Train Acc: {train acc*100:.2£f}%')
print(£'\t Val. Loss: {valid loss:.3f} | Val. Acc: {valid acc*100:.2£f}%"')

Epoch: 01 | Epoch Time: Om 32s
Train Loss: 0.623 | Train Acc: 69.62%
Val. Loss: 0.661 | Val. Acc: 68.68%
Epoch: 02 | Epoch Time: Om 32s
Train Loss: 0.616 | Train Acc: 69.62%
Val. Loss: 0.632 | Val. Acc: 68.71%
Epoch: 03 | Epoch Time: Om 32s
Train Loss: 0.615 | Train Acc: 69.62%
Val. Loss: 0.626 | Val. Acc: 68.71%
Epoch: 04 | Epoch Time: Om 32s
Train Loss: 0.614 | Train Acc: 69.62%
Val. Loss: 0.625 | Val. Acc: 68.71%
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Epoch: 05 | Epoch Time: Om 32s
Train Loss: 0.614 | Train Acc: 69.62%
Val. Loss: 0.624 | Val. Acc: 68.71%

model.load state dict(torch.load('RNN model.pt'))

test loss, test acc = evaluate(model, test iterator, criterion)
print(f'Test Loss: {test loss:.3f} | Test Acc: {test acc*100:.2f}%"')

Test Loss: 0.614 | Test Acc: 69.87%

y_predict = []
y test = []

model.eval()
with torch.no grad():
for batch in test iterator:
predictions = model(batch.Abstract).squeeze(1l)
rounded preds = torch.round(torch.sigmoid(predictions))
y_predict += rounded preds.tolist()
y_test += batch.InfoTheory.tolist()
#acc = binary accuracy(predictions, batch.label)

Let's see how the model performs for Math class.

y_predict = np.asarray(y_predict)
y_test = np.asarray(y_test)

recall=recall score(y_ test,y predict,average='macro')
precision=precision score(y test,y predict,average='macro')
flscore=fl score(y test,y predict,average='macro')
accuracy=accuracy score(y_ test,y predict)

average precision = average precision score(y_test, y predict)

print('Macro Precision: '+ str(precision))
print('Macro Recall: '+ str(recall))
print('Macro F1 score:'+ str(flscore))
print('Accuracy: '+ str(accuracy))

Macro Precision: 0.5581502948952614
Macro Recall: 0.5001969173931106
Macro Fl1 score:0.4501696473628823
Accuracy: 0.816038215265779

~ Part 2 : Topic Modelling

In this section we use the trainig data from Part 1 to train an LDA model and create Vidualisations fro
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Just like in task one we will train the model on two training sets using two separate preprocessing tec

Thereby the two training tests include first 100 and first 20,000 records respectively.

Now the the preprocessing variations that | am going to implement are:

1. With bigrams and trigrams:

Tokenisation —> Remove stop-words, numbers and single characters —> Add bigrams and trigrams -

Bag of Words representation

2. Without Bi-Grams

Tokenisation —> Remove stop-words, numbers and single characters —> Remove rare and common t

Considering we have to train this LDA on two different data-sets, | am expecting significantly better re

the bigger dataset.

Importing Libraries

Though most of the libarraies have already been loaded, we import the relevant gensim modules for 1

import logging

from nltk.tokenize import RegexpTokenizer
from nltk.stem.wordnet import WordNetLemmatizer

from
from
from

!pip

https://colab.research.google.com/drive/1Z44h3610K’Y O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true

gensim.models import Phrases

gensim.corpora import Dictionary

gensim.models import LdaModel
install pyLDAvis==2.1.2
import pyLDAvis.gensim

Collecting pyLDAvis
Downloading https://files.pythonhosted.org/packages/a5/3a/af82e070a8a96el13217c!

| N | 1. GME 7.3MB/s

Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement

==2.1.2

already
already
already
already
already
already
already
already
already

Collecting funcy

Downloading https:

Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement

satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:

wheel>=0.23.0 in /usr/local/lib/python3.7/dist-pac«
numpy>=1.9.2 in /usr/local/lib/python3.7/dist-pacl
scipy>=0.18.0 in /usr/local/lib/python3.7/dist-pa¢
pandas>=0.17.0 in /usr/local/lib/python3.7/dist-p:
joblib>=0.8.4 in /usr/local/lib/python3.7/dist-pac
jinja2>=2.7.2 in /usr/local/lib/python3.7/dist-pac
numexpr in /usr/local/lib/python3.7/dist-packages
pytest in /usr/local/lib/python3.7/dist-packages

future in /usr/local/lib/python3.7/dist-packages

//files.pythonhosted.org/packages/66/89/479de0afbbfb98d1c4b8!

already
already
already
already
already
already
already

satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:

pytz>=2017.2 in /usr/local/lib/python3.7/dist-pac]
python-dateutil>=2.7.3 in /usr/local/lib/python3.’
MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-
six>=1.10.0 in /usr/local/lib/python3.7/dist-pack:
attrs>=17.4.0 in /usr/local/lib/python3.7/dist-pac«
setuptools in /usr/local/lib/python3.7/dist-packat
py>=1.5.0 in /usr/local/lib/python3.7/dist-packags
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Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-
Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7,
Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dis:
Building wheels for collected packages: pyLDAvVis
Building wheel for pyLDAvis (setup.py) ... done
Created wheel for pyLDAvis: filename=pyLDAvis-2.1l.2-py2.py3-none-any.whl size=!
Stored in directory: /root/.cache/pip/wheels/98/71/24/513a99e58bb6b8465baedd2d!
Successfully built pyLDAvis
Installing collected packages: funcy, pyLDAvis
Successfully installed funcy-1.15 pyLDAvis-2.1.2
/usr/local/lib/python3.7/dist-packages/past/types/oldstr.py:5: DeprecationWarnine
from collections import Iterable

Just like in Part 1 (SVM approach), I'll now create functions for preprocessing, modelling anf visusalis
configurations.

v Pre-processing

In this function, | pass two parameters:

1. Training set
2. Bigram Flag

As discussed above, the preprocessing variations are based on inclusion and exclusion of bigrams fr
Bigram Flag is Boolean parameter that represents with bigrams when set to True and without bigram:
have already been written in the last Markdown cell, I'll skip this part here. Finally the function returns

def pre process(docs, bigram flag):
# Tokenize the documents.
docs = docs

# Split the documents into tokens.

tokenizer = RegexpTokenizer(r'\w+')

for idx in range(len(docs)):
docs[idx] = docs[idx].lower() # Convert to lowercase.
docs[idx] = tokenizer.tokenize(docs[idx]) # Split into words.

# Remove numbers, but not words that contain numbers.
docs = [[token for token in doc if not token.isnumeric()] for doc in docs]

# Remove words that are only one character.
docs = [[token for token in doc if len(token) > 1] for doc in docs]

lemmatizer = WordNetLemmatizer()
docs = [[lemmatizer.lemmatize(token) for token in doc] for doc in docs]

if (bigram flag):
print ("Bigrams Added")
bigram = Phrases(docs, min count=20)
for idx in range(len(docs)):
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for token in bigram[docs[idx]]:
if ' ' in token:
# Token is a bigram, add to document.
docs[idx].append(token)
else:
print("Skipping Bigrams")

# Create a dictionary representation of the documents.
dictionary = Dictionary(docs)

# Filter out words that occur less than 20 documents, or more than 50% of the docum
dictionary.filter extremes(no below=20, no above=0.5)

# Bag-of-words representation of the documents.

corpus = [dictionary.doc2bow(doc) for doc in docs]
print('\n")

print( 'Number of unique tokens: %d' % len(dictionary))
print ( 'Number of documents: %d' % len(corpus))

return(dictionary, corpus)

v Model Training

Using the dictionary and corpus generated from preprocessing the text, we set the training paarmetel
function return s the model created for further visualising the returns.

def model training(dictionary, corpus):
# Train LDA model.

# Set training parameters.

NUM_TOPICS = 4

chunksize = 2000

passes = 20

iterations = 400

eval every = None # Don't evaluate model perplexity, takes too much time.

# Make a index to word dictionary.
temp = dictionary[0] # This is only to "load" the dictionary.
id2word = dictionary.id2token

model = LdaModel (
corpus=corpus,
id2word=id2word,
chunksize=chunksize,
alpha='auto',
eta="'auto',
iterations=iterations,
num_topics=NUM TOPICS,
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passes=passes,

eval every=eval every

)
outputfile = f'model{NUM TOPICS}.gensim'

print("Saving model in " + outputfile)
print("")

model.save(outputfile)

return(model)

+ Visualisation

Finally, I will use the dictionary, model and corpus generated from the previous functions and pass th
visual reprenstation of topic modelling is returned.

def visualisation(model, corpus, dictionary):
lda display = pyLDAvis.gensim.prepare(model, corpus, dictionary, sort topics=False)
return(pyLDAvis.display(lda display))

Now I'll call the three functions for each configuration:

1. Smaller training set with Bigrams
2. Smaller trainig set without Bigrams
3. Bigger training set with Bigrams

4. Bigger training set without Bigrams

1.1 First 1000 records without Bigrams.

logging.basicConfig(format="'%(asctime)s : %(levelname)s : %(message)s', level=logging

# load up this data

text data = []

df = pd.read csv('/content/drive/Shareddrives/fit5212-s1-2021-tutorials/Al/axcs train
df = df[:1000]

docs = df[ 'Abstract'].tolist()

print( 'Number of articles in training set: ', len(docs))

raw_docs = docs.copy()
dictionary, corpus = pre process(docs, False)

model = model training(dictionary, corpus)
visualisation(model,corpus,dictionary)
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Number of articles in training set:
25: : :

25:
25:
25:
25:
25:
25:

2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25

11:
11:
11:
11:
11:
11:
11:

Skipping Bigrams

Number of unique tokens:
Number of documents:
25:

2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
2021-04-25
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1000

adding document #0 to Dictionary(0 unique token:
built Dictionary (6630 unique tokens: ['assuming
discarding 5950 tokens: [('assuming', 7), ('con?
keeping 680 tokens which were in no less than 2I
resulting dictionary: Dictionary (680 unique toke

using autotuned alpha, starting with [0.25, 0.2!
using serial LDA version on this node

running online (multi-pass) LDA training, 4 top:
PROGRESS: pass 0, at document #1000/1000
optimized alpha [0.009431198, 0.12684974, 0.098
topic #0 (0.009): 0.015*"be" + 0.012*"can" + 0.
topic #1 (0.127): 0.015*"model" + 0.014*"be" + |
topic #2 (0.099): 0.019*"language”" + 0.016*"by"
topic #3 (0.034): 0.013*"grammar" + 0.013*"from'
topic diff=0.742527, rho=1.000000

PROGRESS: pass 1, at document #1000/1000
optimized alpha [0.010240176, 0.092822045, 0.07°
topic #0 (0.010): 0.014*"be" + 0.013*"word" + 0
topic #1 (0.093): 0.015*"model"” + 0.014*"be" + |
topic #2 (0.077): 0.021*"language" + 0.0l6*"a"
topic #3 (0.034): 0.0l14*"grammar" + 0.013*"from'
topic diff=0.126149, rho=0.577350

PROGRESS: pass 2, at document #1000/1000

optimized alpha [0.011069208, 0.079387106, 0.06!

topic #0 (0.011): 0.014*"word" + 0.013*"parsing'
topic #1 (0.079): 0.015*"model" + 0.015*"be" + |
topic #2 (0.067): 0.023*"language" + 0.017*"syst
topic #3 (0.033): 0.014*"grammar" + 0.013*"mode:
topic diff=0.102789, rho=0.500000

PROGRESS: pass 3, at document #1000/1000

optimized alpha [0.011954197, 0.07178612, 0.061!

topic #0 (0.012): 0.016*"word" + 0.014*"parsing'
topic #1 (0.072): 0.015*"be" + 0.015*"model" + |
topic #2 (0.062): 0.024*"language" + 0.018%*"syst
topic #3 (0.033): 0.014*"grammar" + 0.014*"mode:
topic diff=0.082079, rho=0.447214

PROGRESS: pass 4, at document #1000/1000
optimized alpha [0.012822084, 0.06706446, 0.058
topic #0 (0.013): 0.017*"word" + 0.015*"based"
topic #1 (0.067): 0.015%*"be" + 0.015*"model"” + |
topic #2 (0.058): 0.025*"language"” + 0.019*"syst
topic #3 (0.032): 0.015*"model" + 0.014*"gramma:
topic diff=0.066001, rho=0.408248

PROGRESS: pass 5, at document #1000/1000

optimized alpha [0.013667848, 0.0638764, 0.0557!

topic #0 (0.014): 0.017*"word" + 0.016*"based"
topic #1 (0.064): 0.016*"be" + 0.014*"it" + 0.0
topic #2 (0.056): 0.026*"language"” + 0.019*"syst
topic #3 (0.032): 0.016*"model" + 0.014*"word"
topic diff=0.054125, rho=0.377964

PROGRESS: pass 6, at document #1000/1000
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2021-04-25 11:26:06,150 : INFO : topic #1 (0.053): 0.0l6*"be" + 0.014*"it" + 0.0
2021-04-25 11:26:06,154 : INFO : topic #2 (0.050): 0.028*"language" + 0.021*"syst
2021-04-25 11:26:06,154 : INFO : topic #3 (0.031): 0.020*"model" + 0.015*"word"
2021-04-25 11:26:06,156 : INFO : topic diff=0.016021, rho=0.250000
2021-04-25 11:26:06,158 : INFO : PROGRESS: pass 15, at document #1000/1000
2021-04-25 11:26:06,839 : INFO : optimized alpha [0.02045913, 0.052654803, 0.049!
2021-04-25 11:26:06,841 : INFO : topic #0 (0.020): 0.019*"word" + 0.017*"based"
2021-04-25 11:26:06,845 : INFO : topic #1 (0.053): 0.016*"be" + 0.014*"it" + 0.0
2021-04-25 11:26:06,847 : INFO : topic #2 (0.050): 0.028*"language" + 0.021*"syst
2021-04-25 11:26:06,851 : INFO : topic #3 (0.031): 0.020*"model" + 0.016*"word"
2021-04-25 11:26:06,854 : INFO : topic diff=0.015063, rho=0.242536
2021-04-25 11:26:06,860 : INFO : PROGRESS: pass 16, at document #1000/1000
2021-04-25 11:26:07,467 : INFO : optimized alpha [0.02098118, 0.0522637, 0.04946!
2021-04-25 11:26:07,469 : INFO : topic #0 (0.021): 0.019*"word" + 0.017*"based"
2021-04-25 11:26:07,471 : INFO : topic #1 (0.052): 0.017*"be" + 0.014*"it" + 0.0
2021-04-25 11:26:07,474 : INFO : topic #2 (0.049): 0.028*"language" + 0.021*"syst
2021-04-25 11:26:07,476 : INFO : topic #3 (0.031): 0.021*"model" + 0.016*"word"
2021-04-25 11:26:07,478 : INFO : topic diff=0.013813, rho=0.235702
2021-04-25 11:26:07,481 : INFO : PROGRESS: pass 17, at document #1000/1000
2021-04-25 11:26:08,066 : INFO : optimized alpha [0.021494994, 0.05189599, 0.049:
2021-04-25 11:26:08,070 : INFO : topic #0 (0.021): 0.019*"word" + 0.017*"based"
2021-04-25 11:26:08,073 : INFO : topic #1 (0.052): 0.017*"be" + 0.014*"it" + 0.0
2021-04-25 11:26:08,076 : INFO : topic #2 (0.049): 0.028*"language" + 0.021*"syst
2021-04-25 11:26:08,082 : INFO : topic #3 (0.031): 0.021*"model"” + 0.016*"word"
2021-04-25 11:26:08,083 : INFO : topic diff=0.012732, rho=0.229416
2021-04-25 11:26:08,088 : INFO : PROGRESS: pass 18, at document #1000/1000
2021-04-25 11:26:08,678 : INFO : optimized alpha [0.021982525, 0.05159373, 0.049!
2021-04-25 11:26:08,680 : INFO : topic #0 (0.022): 0.019*"word" + 0.017*"based"
2021-04-25 11:26:08,684 : INFO : topic #1 (0.052): 0.017*"be" + 0.014*"it" + 0.0
2021-04-25 11:26:08,687 : INFO : topic #2 (0.050): 0.028*"language" + 0.021*"sysi
2021-04-25 11:26:08,688 : INFO : topic #3 (0.031): 0.021*"model" + 0.016*"word"
2021-04-25 11:26:08,690 : INFO : topic diff=0.011712, rho=0.223607
2021-04-25 11:26:08,693 : INFO : PROGRESS: pass 19, at document #1000/1000
2021-04-25 11:26:09,348 : INFO : optimized alpha [0.022444164, 0.051303525, 0.04!
2021-04-25 11:26:09,350 : INFO : topic #0 (0.022): 0.019*"word" + 0.017*"based"
2021-04-25 11:26:09,351 : INFO : topic #1 (0.051): 0.017*"be" + 0.014*"it" + 0.0
2021-04-25 11:26:09,359 : INFO : topic #2 (0.050): 0.028*"language" + 0.021*"syst
2021-04-25 11:26:09,361 : INFO : topic #3 (0.031): 0.022*"model" + 0.016*"word"
2021-04-25 11:26:09,364 : INFO : topic diff=0.010994, rho=0.218218
2021-04-25 11:26:09,370 INFO : saving LdaState object under model4.gensim.state
/usr/local/lib/python3. 7/dlSt -packages/smart open/smart open lib.py:479: Deprecat
warnings.warn(message, category=DeprecationWarning)
2021-04-25 11:26:09,372 : INFO : saved modeld.gensim.state
/usr/local/lib/python3.7/dist-packages/smart _open/smart open lib.py:479: Depreca
warnings.warn(message, category=DeprecationWarning)
2021-04-25 11:26:09,375 : INFO : saving LdaModel object under model4.gensim, sep:
2021-04-25 11:26:09,378 : INFO : storing np array 'expElogbeta' to model4.gensim
2021-04-25 11:26:09,383 : INFO : not storing attribute dispatcher
2021-04-25 11:26:09,385 : INFO : not storing attribute state
2021-04-25 11:26:09,387 INFO : not storing attribute id2word
/usr/local/lib/python3. 7/dlSt packages/smart open/smart open lib.py:479: Deprecaf
warnings.warn(message, category=DeprecationWarning)
2021-04-25 11:26:09,391 : INFO : saved model4.gensim
Saving model in model4.gensim

Selected Topic: |0 || Previous Topic || Next Topic || Clear Topic Slide
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Intertopic Distance Map (via multidimensional scaling)

PC2
word
language
parsing
discourse
parser
corpus
algorithm
method
model
1 text
theory
speech
statistical
agent
PC1 noun
sentence
disambiguation
dictionary
accuracy
logic
tree
tagging
tagger
system
translation
3 planning
lexicon
based
spoken

Marginal topic distribution problem

2%

5% 1. sal
2. rel

10%

1.2 First 1000 records with Bigrams

logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging

# load up this data

text data = []

df = pd.read csv('/content/drive/Shareddrives/fit5212-s1-2021-tutorials/Al/axcs train
df = df[:1000]

docs = df[ 'Abstract'].tolist()

print ( 'Number of articles in training set: ', len(docs))

raw_docs = docs.copy()

https://colab.research.google.com/drive/1Z44h3610K’Y O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true 32/99
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2021-04-25 11:26:30,393 : INFO : saved model4.gensim
Saving model in model4.gensim

2.1 First 20,000 records without Bigrams

# load up this data

text data = []

df = pd.read csv('/content/drive/Shareddrives/fit5212-s1-2021-tutorials/Al/axcs train
df df[:20000]

docs = df[ 'Abstract'].tolist()

print ( 'Number of articles in training set: ', len(docs))

raw_docs = docs.copy()

dictionary, corpus = pre process(docs, False)
model = model training(dictionary, corpus)
visualisation(model,corpus,dictionary)
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INFO

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

5255

INFO
INFO
INFO
INFO
INFO
INFO
INFO :

WARNING
INFO :

INFO
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INFO
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INFO
INFO
INFO
INFO
INFO
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INFO
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INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
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20000
adding document #0 to Dictionary(0 unique token:

adding document #10000 to Dictionary (26612 unidqi
built Dictionary (38303 unique tokens: ['assumin¢
discarding 33048 tokens: [('in', 17737), ('is',
keeping 5255 tokens which were in no less than .
resulting dictionary: Dictionary (5255 unique tol
using autotuned alpha, starting with [0.25, 0.2!
using serial LDA version on this node

running online (multi-pass) LDA training, 4 top:
PROGRESS: pass 0, at document #2000/20000

optimized alpha [0.09071927, 0.078422055, 0.059

: merging changes from 2000 documents into a mode:

topic #0 (0.091):
topic #1 (0.078):

0.011*"model" + 0.011*"system'
0.011*"algorithm" + 0.010*"la
topic #2 (0.060): 0.011*"model" + 0.009*"langua¢
topic #3 (0.036): 0.013*"a" + 0.009*"it" + 0.00!
topic diff=2.835881, rho=1.000000

updated prior not positive
PROGRESS: pass 0, at document #4000/20000

optimized alpha [0.087769255, 0.087944746, 0.06:

: merging changes from 2000 documents into a mode:

topic #0 (0.088): 0.011*"system" + 0.010*"model'
topic #1 (0.088): 0.012*"algorithm" + 0.009*"a"
topic #2 (0.064): 0.013*"quantum" + 0.012*"mode:

#3 (0.046): 0.013*"a" + 0.009*"it"
topic diff=0.883455, rho=0.707107
PROGRESS: pass 0, at document #6000/20000
optimized alpha [0.09314304, 0.09800852,

topic + 0.00!

0.0698!1

: merging changes from 2000 documents into a mode:

topic #0 (0.093): 0.011*"system" + 0.009*"infor:
topic #1 (0.098): 0.013*"algorithm" + 0.009*"net
topic #2 (0.070): 0.011*"quantum" + 0.010*"mode:
topic #3 (0.059): 0.011*"a" + 0.009*"code" + 0.
topic diff=1.097633, rho=0.577350

PROGRESS: pass 0, at document #8000/20000
optimized alpha [0.09814961, 0.11151452, 0.0741¢

: merging changes from 2000 documents into a mode.

topic #0 (0.098):
topic #1 (0.112):

0.011*"channel" + 0.010*"systc¢
0.011*"algorithm" + 0.010*"net
topic #2 (0.074): 0.009*"quantum" + 0.008*"boun
topic #3 (0.071): 0.011*"a" + 0.009*"code" + 0.l
topic diff=0.604172, rho=0.500000

PROGRESS: pass 0, at document #10000/20000

optimized alpha [0.10515009, 0.120686635, 0.081:

: merging changes from 2000 documents into a mode:

topic
topic
topic

#0 (0.105):
#1 (0.121):

0.013*"channel" + 0.010*"syste
0.012*"network" + 0.01ll*"algo:
#2 (0.081): 0.010*"bound" + 0.008*"channe:
topic #3 (0.083): 0.011*"a" + 0.009*"code" + 0.!
topic diff=0.388050, rho=0.447214

PROGRESS: pass 0, at document #12000/20000
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2021-04-25 L11:41:09,163 : LNFO : toplc ditr=U0.U5Y/82, rho=U.l825/4

2021-04-25 11:41:09,174 : INFO : saving LdaState object under model4d.gensim.state¢

/usr/local/lib/python3.7/dist-packages/smart open/smart open lib.py:479: Depreca
warnings.warn(message, category=DeprecationWarning)

2021-04-25 11:41:09,179 : INFO : saved modeld.gensim.state

/usr/local/lib/python3.7/dist-packages/smart_open/smart open lib.py:479: Depreca
warnings.warn(message, category=DeprecationWarning)

2021-04-25 11:41:09,185 : INFO : saving LdaModel object under model4d.gensim, sep:

2021-04-25 11:41:09,188 : INFO : storing np array 'expElogbeta' to model4.gensim

2021-04-25 11:41:09,191 : INFO : not storing attribute dispatcher

2021-04-25 11:41:09,195 : INFO : not storing attribute state

2021-04-25 11:41:09,196 : INFO : not storing attribute id2word

/usr/local/lib/python3.7/dist-packages/smart_open/smart open lib.py:479: Depreca
warnings.warn(message, category=DeprecationWarning)

2021-04-25 11:41:09,202 : INFO : saved model4.gensim

Saving model in model4.gensim

Selected Topic: |0 || Previous Topic || Next Topic || Clear Topic | Slidi

Intertopic Distance Map (via multidimensional scaling)

PC2
channel
network
code
graph
rate

data
A

2.2 First 20,000 records with Bigrams

U Y P

# load up this data

text data = []

df = pd.read csv('/content/drive/Shareddrives/fit5212-s1-2021-tutorials/Al/axcs train
df = df[:20000]

docs = df[ 'Abstract'].tolist()

print( 'Number of articles in training set: ', len(docs))

raw_docs = docs.copy()
dictionary, corpus = pre process(docs, True)

model = model training(dictionary, corpus)
visualisation(model,corpus,dictionary)

https://colab.research.google.com/drive/1Z44h3610K’Y O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true 66/99
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Number of articles in training set: 20000

2021-04-25 11:
2021-04-25 11:

Bigrams Added

2021-04-25 11:
2021-04-25 11:
2021-04-25 11:

41:
41:

41:
41:

41:

31,039 INFO
31,040 INFO
33,052 INFO
35,292 INFO
35,293 INFO

collecting all words and their counts
PROGRESS: at sentence #0, processed 0 words and

PROGRESS: at sentence #10000, processed 1290845
collected 702068 word types from a corpus of 27
using 702068 counts as vocab in Phrases<0 vocab

/usr/local/lib/python3. 7/dlSt packages/gensim/models/phrases.py:598: UserWarning
warnings.warn("For a faster implementation, use the gensim.models.phrases.Phras

2021-04-25 11:
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WARNING

41:44,694 : INFO
41:45,687 : INFO
41:46,776 : INFO
41:46,880 : INFO
41:46,881 : INFO
41:46,898 : INFO
41:48,493 : INFO
41:48,495 : INFO
41:48,504 : INFO
41:48,505 : INFO
6474
20000

41:54,401 : INFO
41:54,403 : INFO
41:54,412 : INFO
41:54,413 : INFO
41:54,415 : INFO
41:54,418 : INFO
41:54,420 : INFO
41:54,432

41:54,433 : INFO
41:56,918 : INFO
41:56,920 : INFO
41:56,927 : INFO
41:56,929 : INFO
41:56,931 : INFO
41:56,934 : INFO
41:56,936 : INFO
41:56,948 : INFO
41:58,821 : INFO
41:58,823 : INFO
41:58,831 : INFO
41:58,833 : INFO
41:58,836 : INFO
41:58,838 : INFO
41:58,840 : INFO
41:58,851 : INFO
42:00,452 : INFO
42:00,454 : INFO
42:00,460 : INFO
42:00,462 : INFO
42:00,464 : INFO
42:00,465 : INFO
42:00,468 : INFO
42:00,481 : INFO
42:01,900 : INFO

adding document #0 to Dictionary(0 unique token:
adding document #10000 to Dictionary (28169 uniq
built Dictionary (39881 unique tokens: [ 'assumin
discarding 33407 tokens: [('in', 17737), ('is',
keeping 6474 tokens which were in no less than .
resulting dictionary: Dictionary(6474 unique tol
using autotuned alpha, starting with [0.25, 0.2
using serial LDA version on this node

running online (multi-pass) LDA training, 4 top:
PROGRESS: pass 0, at document #2000/20000

optimized alpha [0.042382985, 0.07852848, 0.078!

: merging changes from 2000 documents into a mode:

topic #0 (0.042): 0.0l4*"model" + 0.010*"a" + 0
topic #1 (0.079): 0.010*"a" + 0.009*"system" + |
topic #2 (0.078): 0.009*"language" + 0.009*"it"
topic #3 (0.048): 0.010*"be" + 0.009*"can" + 0.
: topic diff=3.036457, rho=1.000000
updated prior not positive

PROGRESS: pass 0, at document #4000/20000
optimized alpha [0.050672114, 0.09463162, 0.079

: merging changes from 2000 documents into a mode:

topic #0 (0.051): 0.013*"model" + 0.012*"quantu:
topic #1 (0.095): 0.010*"system" + 0.009*"a" + |
topic #2 (0.080): 0.009*"problem" + 0.008*"it"
topic #3 (0.060): 0.010*"be" + 0.008*"can" + 0.l
topic diff=0.987760, rho=0.707107

PROGRESS: pass 0, at document #6000/20000
optimized alpha [0.058916904, 0.10948626, 0.086"

: merging changes from 2000 documents into a mode:

topic #0 (0.059): 0.013*"model" + 0.0l11*"quantul
topic #1 (0.109): 0.010*"network" + 0.010*"syste
topic #2 (0.087): 0.010*"problem" + 0.008*"it"
topic #3 (0.073): 0.012*"code" + 0.011*"channel'
topic diff=1.226538, rho=0.577350

PROGRESS: pass 0, at document #8000/20000
optimized alpha [0.06606102, 0.12771736, 0.0933

: merging changes from 2000 documents into a mode.

topic #0 (0.066): 0.013*"model" + 0.009*"a" + 0
topic #1 (0.128): 0.011*"network" + 0.010*"syste
topic #2 (0.093): 0.0l11*"problem" + 0.008*"a" +
topic #3 (0.086): 0.013*"channel" + 0.012*"code'
topic diff=0.694497, rho=0.500000

PROGRESS: pass 0, at document #10000/20000
optlmlzed alpha [O 07192906 0.1383983, 0.09983

https://colab.research., google com/drlve/ IZ44h3610KY08tZ hB3wBectycP5Nan #ﬂcrollTo—WBI3prOVth&pr1ntM0de—true 67/99


http://vis.stanford.edu/files/2012-Termite-AVI.pdf
http://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf

25/04/2021

https://colab.research.google.com/drive/1Z44h3610KY O8tZ-hB3wBectycPSNnxI_#scroll To=WBI3bpzOVGhk&printMode=true

code_31125301.ipynb - Colaboratory

2021-04-25 Ll:45:11,002 LNFO PROGRESS: pass 1Y, at document #20000/20000
2021-04-25 11:45:11,927 INFO optimized alpha [0.18327516, 0.29783577, 0.2359I
2021-04-25 11:45:11,930 INFO : merging changes from 2000 documents into a mode:
2021-04-25 11:45:11,943 INFO topic #0 (0.183): 0.010*"method" + 0.010*"model
2021-04-25 11:45:11,945 INFO topic #1 (0.298): 0.011*"system" + 0.011*"netwo:
2021-04-25 11:45:11,955 INFO topic #2 (0.236): 0.015*"problem" + 0.013*"algo:
2021-04-25 11:45:11,958 INFO topic #3 (0.130): 0.022*"channel" + 0.015*"code'
2021-04-25 11:45:11,959 INFO topic diff=0.063862, rho=0.182574
2021-04-25 11:45:11,973 INFO : saving LdaState object under model4.gensim.state
/usr/local/lib/python3. 7/dlSt packages/smart open/smart open lib.py:479: Depreca
warnings.warn(message, category=DeprecationWarning)
2021-04-25 11:45:11,977 INFO saved model4.gensim.state
/usr/local/lib/python3.7/dist-packages/smart_open/smart open lib.py:479: Depreca

warnings.warn(message, category=DeprecationWarning)
2021-04-25 11:45:11,984 : INFO : saving LdaModel object under model4.gensim, sep:
2021-04-25 11:45:11,986 INFO storing np array 'expElogbeta' to model4.gensim
2021-04-25 11:45:11,988 INFO not storing attribute dispatcher
2021-04-25 11:45:11,990 INFO not storing attribute state
2021-04-25 11:45:11,991 INFO : not storing attribute id2word
/usr/local/lib/python3. 7/dlSt packages/smart open/smart open lib.py:479: Deprecat
warnings.warn(message, category=DeprecationWarning)
2021-04-25 11:45:11,995 INFO saved model4.gensim
Saving model in model4.gensim
Selected Topic: |2 || Previous Topic || Next Topic || Clear Topic | Slide
Intertopic Distance Map (via multidimensional scaling)
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v Aggregating this information in a table

def get document topics(ldamodel=model, corpus=corpus, texts=raw docs):
# Init output
document topics df = pd.DataFrame()

# Get main topic in each document

for i, row in enumerate(ldamodel[corpus]):
row = sorted(row, key=lambda x: (x[l]), reverse=True)
# Get the Dominant topic, Perc Contribution and Keywords for each document
for j, (topic_num, prop topic) in enumerate(row):

if j == 0: # => dominant topic
wp = ldamodel.show topic(topic_num)
topic_keywords = ", ".join([word for word, prop in wp])
document topics df = document topics df.append(pd.Series([int(topic n
else:
break
document topics df.columns = [ 'Dominant Topic', 'Perc Contribution',6 'Topic_Keywo

# Add original text to the end of the output
contents = pd.Series(texts)
document topics df = pd.concat([document topics df, contents], axis=1)

document topics df.columns = ['Dominant Topic', 'Perc Contribution', 'Topic_Keywo

return document topics df

doc_topic _df = get document topics(ldamodel=model, corpus=corpus, texts=raw_docs)

doc_topic df.head()

Dominant_Topic Perc_Contribution Topic_Keywords
0 2.0 0.9759 problem, algorithm, graph, be, set, a, it, whi... Ne:
1 2.0 0.8223 problem, algorithm, graph, be, set, a, it, whi... A nott
2 2.0 0.8860 problem, algorithm, graph, be, set, a, it, whi... Textbool
3 1.0 0.8310 system, network, a, data, it, based, paper, be... Theor
4 2.0 0.6912 problem, algorithm, graph, be, set, a, it, whi... Conl
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v Find the most representative document for each topic

# Group top 5 sentences under each topic
doc topics sorted df = pd.DataFrame()

doc_topic df grpd = doc topic_df.groupby('Dominant Topic')

for i, grp in doc topic_df grpd:
doc_topics sorted df = pd.concat([doc_ topics sorted df,

grp.sort values([ 'Perc Contribution'], a

axis=0)

doc_topics sorted df.reset index(drop=True, inplace=True)

doc_topics sorted df.columns = ['Topic_Num', "Topic Perc Contrib", "Keywords", "Text"

doc_topics_sorted df.head(10)

Topic_Num Topic_Perc_Contrib Keywords
0 0.0 0.9936 method, model, algorithm, a, it, quantum, be, ...
1 1.0 0.9975 system, network, a, data, it, based, paper, be...
2 2.0 0.9971 problem, algorithm, graph, be, set, a, it, whi...
3 3.0 0.9969 channel, code, network, rate, capacity, scheme...

v Find the top-k most representative document for each topic

def find top k doc(doc_topic df=doc_ topic df, k=5):
doc_topics sorted df = pd.DataFrame()
doc_topic df grpd = doc topic df.groupby('Dominant Topic')

for i, grp in doc topic_df grpd:
doc_topics sorted df = pd.concat([doc_ topics_ sorted df,

A topol
Design &
A Simple

High-rate S|

grp.sort values([ 'Perc Contribution'],

axis=0)

doc_topics sorted df.reset index(drop=True, inplace=True)

doc_topics sorted df.columns = ['Topic_ Num', "Topic Perc Contrib", "Keywords", "Tex

return doc_topics sorted df

top k df = find top k doc()
top k df
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FIT5212 Assignment 1
Simran Singh Gulati
31125301

Analysing Model Performance

Part A : Text Classification

In an attempt to predict the subject a piece of text belongs to, we created a bunch of
models — each with a different set of parameters (configurations) to see what combination of

preprocessing, training set and model performed best at classifying the given text.

To discuss the results from each configuration, let’s start with my approach towards the
variation among each model. As given in the assignment specification, we had 3 separate

Binary Classification tasks wherein each article had to be tested against the below said

subjects:
1. InfoTheory
2. CompVis
3. Math

An article may belong to multiple classes or even none of them, which basically means
it could be both InfoTheory and Math related topic or even none of the give labels. This was
motivation behind Binary Classification and not multi-class prediction. Thereby we had 8

models (which simply means 8 sets of configurations) for each class.

In those 8 models, we had 2 subsets — a statistical algorithm and a deep learning
technique. For the statistical classifier I shortlisted SVM and Logistic Regression, from those
taught in the tutorials. As per this blog on Medium, SVM is a better choice than the Logistic
Regression for both un-structured and semi-structured data. Plus the author claims SVM 1isn’t
as prone to over-fitting as is Logistic Regression. Lastly, as observed in the tutorial for Week 4,
Logistic Regression couldn’t predict very well when exposed to an imbalanced dataset (or

skewed distribution) which 1s the case with our dataset as well. Thus I decided to go with
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SVM for the statistical classification. And a simple RNN for the other subset. In nutshell, we

had 4 models using Linear SVC and the other 4 using Simple RNN for each of the 3 classes.

The 2 preprocessing techniques involved lemmatising the text using two different
libraries — NLTK and Spacy. Both of them tokenised the text and lemmatised but the
difference 1s that Spacy does Part of Speech (POS) tagging as well. Note that the Spacy 1s an
exhaustive pipeline with plenty of components which also include dependency labelling and
entity name detection. Considering the size of our dataset the nlp pipeline from Spacy would
take infinitely long to process all the text articles, so just like in tutorials we disabled the
former two components (parser and ner) to restrict the pipeline to just POS tagging. Plus this
allows us to draw a comparison between lemmatisation done by NLTK and Spacy more

precisely as the only difference here is POS tagging (only in Spacy, not in NLTK).

Now that we have 3 classification tasks, each modelled on 2 types of algorithms, with 2
different preprocessing techniques — we further train the using 2 different training sets.
While one is trained on the entire set of records (close to 54000) the other one restricted to
just the top 1000 records. Thereby half the models are are trained on 50 times the size of

data in the other half.

Considering the 24 (3 X 2 X 2 X 2) sets of configuration, I expect better results from
the simple RNN and those trained on the bigger dataset. Lastly those process with Spacy are
also expected with better performance metrics. Now given the skewness of data, most of the
articles are labelled as class O (across all three subjects), thereby accuracy might not be the best
measure. For example (drawn from the Jupyter notebook attached) : 96% of articles are
labelled as O for the CompVis class and blindly labelling each article as 0 will return very high
accuracy. Considering a serious classification task like in the field of medicine, False Positives
may lead to sever repercussion. Therefore we look at Precision, Recall, F1 Score and a

precision- recall curve to draw conclusions from our models.

Precision = TP/(TP+FP)
Recall = TP/(TP+FN)
Considering the mathematical definition both these metrics can be idwidually cheated

with a specific case (or simply imbalanced dataset) to make the denominator equal to TP. This
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can only be done to either of them and not both. Therefore a third metric — F1 score which

is a combination of both seems the best measure for determining the model performance.

Looking at the graphs, we can see there’s not much difference between the two

lemmatisers.
2-class Precision-Recall curve: AP=0.19 2-class Precision-Recall curve: AP=0.18
10 4 10
09 09
08 08
g 07 5 07
§ 06 é 0.6
& 05 A & 05
04 04
031 03
0.2 1 = LinearSVC (AP = 0.40) 0.2 { = LinearSVC (AP = 0.44)
00 02 04 06 08 10 00 02 04 06 08 10
Recall Recall

The graph on the left represents configuration 1.1 (refer Jupyter notebook) and the one
on right represents 1.2 — both are for InfoTheory classification trained on SVM with the
smaller dataset. These were pre-processed using Tf-IDF vectoriser with NLTK
LemmaTokeniser (1.1) and Spacy’s LemmaTokeniser (1.2). The only difference we can see is
there’s a slightly gradual decline in Precision for the Spacy (right). And the left one is a ftile
steeper. Plus the average precision from Spacy (left) is around 10% better (higher) than
NLTK. While I would like to conclude that Spacy is better than NLTK (restricting it to
Lemmatisation) but the other graph don’t say the same. In fact all other graph have same
precision for each pre-processing. In fact, in the last 2 (3.3 and 3.4 — refer Jupyter) NLTK
has slightly better average-precision than the Spacy. The difference in above attached graphs
(1.1 and 1.2) 1s not enough to make an overall statement. Had the other two cases (2.1 and
2.2, 3.1 and 3.2) shown same results it would have been wise to generalise. Nonetheless we
expected Spacy to better, even though slightly, in this particular case it does align with out

expectation.
This motivated me to compare the same configuration (SVM with Spacy) with the one

trained on bigger dataset. The graph on left (next page) represents 1.2 (smaller dataset) and

that on right represents 1.4 (bigger dataset).
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2-class Precision-Recall curve: AP=0.19 2-class Precision-Recall curve: AP=0.80
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While my focus for comparison would be F-1 score in this case, we cannot ignore the
huge difference in the precision-recall curve. The average precision for bigger 1.4 is 0.95
which is more than the double of 1.2. We must note that around 80% of texts in InfoTheory
are labelled as 0, so the data is highly skewed. Thus looking at just the precision is not a good
idea, the False Positive might be influenced. Moving to the F1 Score, I see 0.45 for 1.2 versus
0.94 for 1.4. Similarly with 2.2 and 2.4 (higher F1), the bigger dataset has better prediction
results. It looks all well when I move to 3.2 with a F1 score of 0.45 but the results are
surprising when we look at the 3.4 (F1 of 0.4) — Contrary to the trend in InfoTheory and
CompVis, Math had better F'1 Score with smaller training set. Thus I looked at the
percentage of 0 labels in the Math Class for the bigger training set, which was approximately
70%.

Probably the high percentage of ‘1’ labels in smaller training set caused the model to
overfit but this can not be the explanation for results from 3.4 as it already has all the data
records. In fact the bias due to skewed distribution should have been in favour of class 0,
unlike the case here. Thinking on those lines, maybe the other 2 classes (InfoTheory and
CompVis) had bias in results due to extremely high proportion of 0 labels (0.8 and 0.9
respectively and SVM failed on Math. Probably it was not the bigger training set that was

yielding good results but that the SVM is not a good a choice for a skewed dataset.
This made me look at the Simple RNIN performance wherein it proves that SVM was

not wrong for Math but was biased due to the skewness in InfoTheory and

CompVis classes. If this statement was overwhelming at this stage, let’s build a table for a
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detailed comparison of the results from the two algorithms. To keep it concise, I’ll limit to the

models trained on bigger datasets with Spacy’s LemmaTokeniser :

Linear SVC Simple RNN
InfoTheory Il 0.92 0.46
Precision 0.94 0.55
Recall 0.90 0.50
CompVis F1 0.92 (RIZE
Precision 0.96 0.53
Recall 0.88 0.50
Math Fl1 0.39 0.45
Precision 0.43 0.55
Recall 0.37 0.50

The results are drawn from the Jupyter notebook attached (please refer for verification).
Here we can clearly see that the SVM had better performance than RNN for both
InfoTheory and CompVis. While one may claim that SVM is better than RNN bit things
change when we look at the results for Math class. Here the RNIN outperformed the SVM by
15% for the F1 score. We can even look at the individual Precision and Recall scores which
align well with this observation. Had SVM really been better than RNN, it should have had
the same accuracy (general use, not the performance metric) in predicting the labels for Math
class as well. Looking at the consistency among RINN for all kinds of data distribution (0.7,

0.8, 0.9) in the class labels I can say Linear SVC was overfitting due to the overfitting,

Although, this is opposite to what were taught in the tutorial where Linear SVC
outperformed Simple RNN (where we were taught about tweaking the RNN parameters) —
In my experiment I feel the skewness in InfoTheory and CompVis is the reason for not

achieving the optimal performance with SVM.
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To conclude, Spacy was not significantly better than NLTK in lemmatisation. Rather
they had identical performance. Next the bigger dataset was clearly a good choice for training
the models. Lastly, though RNN didn’t have great F1 score when compared to SVM but the
results were pretty consistent across all three classes despite the varied skewness in each class.

So at least we can say it did not overfit and could handle skewness better than the SVM.

Part B : Topic Modelling

In this section we perform unsupervised clustering (using LDA) on the training data
from Part A, to find out the dominant topics in each text article. Just like in last section, we
deploy a range of configurations with 2 different training sets and 2 different preprocessing
techniques. The two datasets comprise of first 1000 and first 20,000 records respectively. And

the two preprocessing techniques would be :
1. Without bigrams :

Tokenisation —> Remove stop-words, numbers and single characters —> Remove rare

and common tokens —> Bag of Words representation
2. With Bi-Grams

Tokenisation —> Remove stop-words, numbers and single characters —> Add
bigrams and trigrams —> Remove rare and common tokens —> Bag of Words

representation
Considering we have to train this LDA on two different data-sets, I am expecting
significantly better results from variation 2 (with bigrams) on the bigger dataset. Plus we will set

number of topics to 4 as:

(1) 3 main clusters - 1 for each class (InfoTheory, CompVis and Math)

(i) 1 cluster for documents that fall in none of the categories
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Intertopic Distance Map (via multidimensional scaling)
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Overall term frequency

I Estimated term frequency within the selected topic

1. saliency(term w) = frequency(w) * [sum_t p(t | ) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)
2. relevance(term w | topic t) = A * p(w | ) + (1 - A) * p(w | t)/p(w); see Sievert & Shirley (2014)

Here’s a screenshot (attached above, refer to Jupyter Notebook for interactivity) of the

visualisation from one of the LDA models. This is from the smaller dataset with bigrams. We can

clearly see the 4 topics are far apart from each other, unlike the one attached below which is

using the same data (1000 records) but without bigrams. As expected the configuration with

bigrams can appropriately differentiate between the given topics.

Selected Topic: [0 ][ Previous Topic | | Next Topic | Clear Topic |

Intertopic Distance Map (via multidimensional scaling)
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Marginal topic distribution
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Overall term frequency
I Estimated term frequency within the selected topic

1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)
2. relevance(term w | topic t) = A * p(w I t) + (1 - A) * p(w | t)/p(w); see Sievert & Shirley (2014)
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Intertopic Distance Map (via multidimensional scaling)
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Overall term frequency

[ Estimated term frequency within the selected topic

1. saliency(term w) = frequency(w) * [sum_t p(t I w) * log(p(t I w)/p(t))] for topics t; see Chuang et. al (2012)
2. relevance(term w  topic t) = A * p(w I 1) + (1 - ) * p(w | p(w); see Sievert & Shirley (2014)

Referring the visualisation (figure above) from clustering on the bigger dataset without

bigrams, we can draw — topics | and 2 are pretty close to each other when comparing their

distance with clusters 3 and 4. Again as per expectation the addition of bigrams on this bigger

dataset again changes the placement of the clusters. The one with bigrams (attached below)

can cluster the 3 big topics in a more interpretable manner. For instance — the clusters 2,3

and 4 may belong the to the topics InfoTheory, CompVis and Math which are equally

distanced from each other with another cluster (labelled as 1) placed right in the middle of the

three. The central cluster may represent those articles which do not belong to any of the three

mentioned classes.

Selected Topic: [0____] [ Previous Topic | [ Next Topic | Clear Topic |

Intertopic Distance Map (via multidimensional scaling)

PC2

2
Marginal topic distribtion
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Overallterm frequency
[N Estimated term frequency within the selected topic

1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)
2. relevance(term w I topic ) = A * p(w 1) + (1 - A) * p(w | ip(w); see Sievert & Shirley (2014)



Thus I composed a quick look up table (attached below) to see the common words in

Topic_Num Topic_Perc_Contrib

each topic.
o
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
5 1.0
6 1.0
7 1.0
8 1.0
9 1.0
10 2.0
" 2.0
12 2.0
13 2.0
14 2.0
15 3.0
16 3.0
17 3.0
18 3.0
19 3.0

0.9936
0.9934
0.9922
0.9917
0.9907
0.9975
0.9974
0.9973
0.9972
0.9972
0.9971
0.9969
0.9967
0.9967
0.9963
0.9969
0.9968
0.9968
0.9968

0.9965

Keywords
method, model, algorithm, a, it, quantum, be, ...
method, model, algorithm, a, it, quantum, be, ...
method, model, algorithm, a, it, quantum, be, ...
method, model, algorithm, a, it, quantum, be, ...
method, model, algorithm, a, it, quantum, be, ...
system, network, a, data, it, based, paper, be...
system, network, a, data, it, based, paper, be...
system, network, a, data, it, based, paper, be...
system, network, a, data, it, based, paper, be...
system, network, a, data, it, based, paper, be...

problem, algorithm, graph, be, set, a, it, whi...
problem, algorithm, graph, be, set, a, it, whi...
problem, algorithm, graph, be, set, a, it, whi...
problem, algorithm, graph, be, set, a, it, whi...
problem, algorithm, graph, be, set, a, it, whi...
channel, code, network, rate, capacity, scheme...
channel, code, network, rate, capacity, scheme...
channel, code, network, rate, capacity, scheme...
channel, code, network, rate, capacity, scheme...

channel, code, network, rate, capacity, scheme...

Text

A topological chaos framework for hash functi...

A Probabilistic Model For Sequence Analysis T...
Multi-Dimensional Hash Chains and Application...
The B-Exponential Map: A Generalization of th...
Finite Dimensional Statistical Inference In t...
Design & Deploy Web 2.0 enable services over ...
Extraction of Flat and Nested Data Records fr...
CDTOM: A Context-driven Task-oriented Middlew...
Une plate-forme dynamique pour I\'evaluation...
Bulk Scheduling with DIANA Scheduler Results ...
A Simple Polynomial Algorithm for the Longest...

A new algebraic technique for polynomial-time...
On Canonical Forms of Complete Problems via F...
Cut-Elimination and Proof Search for Bi-Intui...
Algorithmic correspondence and completeness i...
High-rate Space-Time-Frequency Codes Achievin...
Feedback Reduction for Random Beamforming in ...
Study of Gaussian Relay Channels with Correla...
Improved Bounds on the Parity-Check Density a...

The Diversity-Multiplexing Tradeoff of the Dy...

This reveals that the dominant words in the Cluster 1( Topic_Num 0 in table) are

method, model, algorithm and quantum.

Cluster 2 comprises of system network and data.

Cluster 3 comprises of problem, algorithm and graph.

Cluster 4 comprises of channel, code, network rate, capacity.

Cluster 3 seems to be Math as it has the keywords graph and set. Cluster 4 looks like

Networking (probably InfoTheory) articles as it has the keywords nlerference, transmission,

wireless, network, rate, etc. Lastly the cluster 2 looks like Human-Computer Interaction or

Application development (potentially CompVis) as it has keywords mobile, device, content,

platform, architecture, database. etc.

To conclude, the addition of bigrams helped in differentiating the topics very well. And

so did the inclusion of extra 19,000 records in the second dataset. Unlike the Part A, the

results are aligning well with our expectations (proposed in the beginning).
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