
2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 1 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

FIT5202 Assignment 2 - 31125301
Analysing pedestrian traffic across the city of Melbourne and predicting activity using
Apache Spark Streaming.

We have two sets of data, one with sensor locations and the other with data captured by
those sensors. And aim to find out the peak activity hours and thus the assocaiated
locations for the street art performers to maximise their audience/reach.

Use Case -
1. Binary Classification : To predict if the hourly count goes above 2000 steps

between 9 AM and Midnight
2. Regression : To estimate the hourly step count between 9 AM and Midnight

Section 1 - Data Loading and
Exploration

1.1 Data Loading

1.1.1 Spark Configuration
We begin by specifying the number of cores to be utilised, name of the application and
the time zone.

In [1]:

Creating Spark Session using the Configurations defined above.

Import SparkConf class into program
from pyspark import SparkConf
run Spark in local mode with as many working processors as logical cores on the machine
master = "local[*]"
to be shown on the Spark cluster UI page
app_name = "FIT5202 Assignment 2 - 31125301"
configuration parameters for Spark
spark_conf = SparkConf().setMaster(master).setAppName(app_name).set(

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 2 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

In [2]:

1.1.2 Data Schema
Refering the metadata file, we define schema for two empty dataframes.

In [3]:

1.1.3 Loading Data
Now we import the data from the CSV file using the predefined schema(s).

Import SparkContext classes
from pyspark import SparkContext # Spark
from pyspark.sql import SparkSession # Spark SQL

Using SparkSession to instantitate a SparkContext
spark = SparkSession.builder.config(conf=spark_conf).getOrCreate()
sc = spark.sparkContext
sc.setLogLevel('ERROR')

from pyspark.sql.types import StructType, StructField, StringType, IntegerType
schema for pedestrian count
schema_ped = StructType([
 StructField('ID', IntegerType(), True),
 StructField('Date_Time', TimestampType(), True),
 StructField('Year', IntegerType(), True),
 StructField('Month', StringType(), True),
 StructField('Mdate', IntegerType(), True),
 StructField('Day', StringType(), True),
 StructField('Time', IntegerType(), True),
 StructField('Sensor_ID', IntegerType(), True),
 StructField('Sensor_Name', StringType(), True),
 StructField('Hourly_Counts', IntegerType(), True),
])

schema for sensor locations
schema_sensor = StructType([
 StructField('sensor_id', IntegerType(), True),
 StructField('sensor_description', StringType(), True),
 StructField('sensor_name', StringType(), True),
 StructField('installation_date', DateType(), True),
 StructField('status', StringType(), True),
 StructField('note', StringType(), True),
 StructField('direction_1', StringType(), True),
 StructField('direction_2', StringType(), True),
 StructField('latitude', FloatType(), True),
 StructField('longitude', FloatType(), True),
 StructField('location', StringType(), True),
])

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 3 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

In [4]:

And inspect the schema after transformation as:

In [5]:

In [6]:

1.1.4 Data Transformation
Refering to the first use case, we compute if the hourly count for sensor is above the
threshold (2000 steps). Thus we create a new column that prints labels:

0 for Count 2000
1 for Count 2000

<
≥

In [7]:

root
 |-- ID: integer (nullable = true)
 |-- Date_Time: timestamp (nullable = true)
 |-- Year: integer (nullable = true)
 |-- Month: string (nullable = true)
 |-- Mdate: integer (nullable = true)
 |-- Day: string (nullable = true)
 |-- Time: integer (nullable = true)
 |-- Sensor_ID: integer (nullable = true)
 |-- Sensor_Name: string (nullable = true)
 |-- Hourly_Counts: integer (nullable = true)

root
 |-- sensor_id: integer (nullable = true)
 |-- sensor_description: string (nullable = true)
 |-- sensor_name: string (nullable = true)
 |-- installation_date: date (nullable = true)
 |-- status: string (nullable = true)
 |-- note: string (nullable = true)
 |-- direction_1: string (nullable = true)
 |-- direction_2: string (nullable = true)
 |-- latitude: float (nullable = true)
 |-- longitude: float (nullable = true)
 |-- location: string (nullable = true)

load data from file
df_ped = spark.read.csv("Pedestrian_Counting_System_-_Monthly__counts_per_hour.csv"
df_sensor = spark.read.csv("Pedestrian_Counting_System_-_Sensor_Locations.csv"

df_ped.printSchema()

df_sensor.printSchema()

from pyspark.sql.functions import when
add new column with label
df_ped = df_ped.withColumn('above_threshold', when(df_ped['Hourly_Counts'

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 4 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

Inspecting data after modifacations :

In [8]:

1.2 Exploring the Data

1.2.1 Column Statistics
Here we print descriptive stats for the numeric columns, wherein we first filter the
required columns and then compute the results.

Out[8]: [Row(ID=2887628, Date_Time=datetime.datetime(2019, 11, 2, 4, 0), Y
ear=2019, Month='November', Mdate=1, Day='Friday', Time=17, Sensor
_ID=34, Sensor_Name='Flinders St-Spark La', Hourly_Counts=300, abo
ve_threshold=0),
 Row(ID=2887629, Date_Time=datetime.datetime(2019, 11, 2, 4, 0), Y
ear=2019, Month='November', Mdate=1, Day='Friday', Time=17, Sensor
_ID=39, Sensor_Name='Alfred Place', Hourly_Counts=604, above_thres
hold=0),
 Row(ID=2887630, Date_Time=datetime.datetime(2019, 11, 2, 4, 0), Y
ear=2019, Month='November', Mdate=1, Day='Friday', Time=17, Sensor
_ID=37, Sensor_Name='Lygon St (East)', Hourly_Counts=216, above_th
reshold=0),
 Row(ID=2887631, Date_Time=datetime.datetime(2019, 11, 2, 4, 0), Y
ear=2019, Month='November', Mdate=1, Day='Friday', Time=17, Sensor
_ID=40, Sensor_Name='Lonsdale St-Spring St (West)', Hourly_Counts=
627, above_threshold=0),
 Row(ID=2887632, Date_Time=datetime.datetime(2019, 11, 2, 4, 0), Y
ear=2019, Month='November', Mdate=1, Day='Friday', Time=17, Sensor
_ID=36, Sensor_Name='Queen St (West)', Hourly_Counts=774, above_th
reshold=0)]

print first 5 records
df_ped.take(5)

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 5 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

In [9]:

1.2.2 Class Distribution
Now we print the number of records for each label to study the spread of data.

In [10]:

+-------+-----------------+------------------+------------------+-
-----------------+------------------+-----------------+
|summary|ID |Year |Mdate |T
ime |Sensor_ID |Hourly_Counts |
+-------+-----------------+------------------+------------------+-
-----------------+------------------+-----------------+
|count |3435106 |3435106 |3435106 |3
435106 |3435106 |3435106 |
|mean |1717553.5 |2016.0032330880038|15.751918863639142|1
1.459955238644746|22.978422791028866|560.7805942524044|
|stddev |991629.8312350252|3.1237869143646275|8.79918757461428 |6
.943473866829414 |16.229792156265397|809.9942576353371|
|min |1 |2009 |1 |0
|1 |0 |
|max |3435106 |2020 |31 |2
3 |71 |15979 |
+-------+-----------------+------------------+------------------+-
-----------------+------------------+-----------------+

+---------------+-------+
|above_threshold| count|
+---------------+-------+
| 1| 250942|
| 0|3184164|
+---------------+-------+

df_ped['ID', 'Year', 'Mdate', 'Time', 'Sensor_ID', 'Hourly_Counts'].

df_ped.groupBy('above_threshold').count().show()

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 6 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

As evident from the output table above, there are approximately 12 times more sensors
with the step count less than 2000 when compared to sensors with counts greater than
(or equal) to 2000.

As we can see the data is distributed in the ratio 13:1, thus there's a significant class
imbalance. And this may lead to skewed predictions. For instance, I propose an
algorithm that predicts label as 0 irrespective of the the features, I still achieve an
accuracy of 92%. While one may suggest use of other metric like Precision, Recall or
even F1 (for worst case scenario), the training phase may still be highly biased or skewed
towards a specific label (1 in my example).

All in all, such a significant imbalance makes it difficult for the model to learn
charactersistic for the minority class (label 1 in our case) as majority of models assume a
balanced distribution of the target variable.

= 12.68 ≈ 133184164
250942

1.2.3 Histogram
Visualising the distribution of the Hourly Counts with log-scale for the frequency.

In [11]:

Out[11]: array([[<AxesSubplot:title={'center':'Hourly_Counts'}>]], dtype=ob
ject)

df_ped.select('Hourly_Counts').toPandas().hist(bins = 100, log='y')

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 7 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

We can see the distribution is far from normal and there's an unusually large number of
sensors with a count of absolute Zero. Considering the threshold is set quite low, the
cummulative distributions below and above 2000 seems fine.

1.2.3 Line Plot
Visualising the trend of average daily counts across all the months in the given time-
frame.

In [12]:

Looking at the line plot, we conclude that the average activity hits a peak twice a year. It
starts increasing in September up till March and then starts declining. Similarly, the count
increases during July and continues to fall till September.

Well, firstly, there's high activity during Summer months i.e. Decmber through March; plus
during the month of July potentially due to winter break for students.

Out[12]: <AxesSubplot:xlabel='Month'>

import library to handle dates
from datetime import datetime
group data by month
df = df_ped.groupBy('Month').mean('Hourly_Counts').toPandas()
transform months from string to datetime
df['Month']= df.apply(lambda row: datetime.strptime(row['Month'], "%B"
order data according to month
df.sort_values('Month', inplace=True)
create line plot
df.plot(x='Month', y='avg(Hourly_Counts)')

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 8 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

1.2.4 Addtional Plots
In the last sub-section, we looked at the overall count distriution (skewed) as well as the
monthly change of trend. This motivated me to further visualise the data based on "Time
of the Day". Quite oviosuly, we can expect high activity during business hours. So we
plot the step frequency according to the Hour of the day.

To do so, we first need to mould data into an optimal format. Begining with aggregation, I
group the data based on Time and then calculate the mean hourly count for each hour.
Followed by sorting of data based on the Hour and then finally plotting a line curve.

In [13]:

Out[13]: Text(0, 0.5, 'Step Count')

import matplotlib.pyplot as plt
aggregation
hourly_counts = df_ped.groupBy('Time').mean('Hourly_Counts').toPandas
ordering data
hourly_counts.sort_values('Time', inplace=True)

plotting a line curve
hourly_counts.plot(x='Time', y='avg(Hourly_Counts)')
plt.xlabel('Hour of the Day')
plt.ylabel('Step Count')

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 9 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

As expected, the step count is significantly high around office hours i.e. 8 AM and 5 PM.
Addtionally, the midday rise around noon may reflect lunch time or people working half
day shifts.

Similarly, we can say that day of the week also affects step count. Precisely speaking we
want to see the contrast between weekdays and weekends. Just like in last plot, we
process the data by

1. Aggregation
2. Sorting
3. Plotting

One complexity that we may come across is the ordering of Days. So we change the
string values into categorical variables (0 for Monday, 1 for Tuesday 6 for Sunday) and
then plot the data.

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 10 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

In [14]:

We see there's high pedestrian traffic on the Friday of each Week and a considerable low
count on the Weekends (Saturday and Sunday).

Thus Day seems to directly affect the label and hence the predictions.

Section 2 - Feature Extraction & ML Training

2.1.1 Theoretical Aspect
Looking at the exploration results, I propose the use of the columns Time, Day, Month
and Sensor_ID as features for Model training.

import pandas as pd
aggregate data on Day
daily_counts = df_ped.groupBy('Day').mean('Hourly_Counts').toPandas()
ordering data
daily_counts.sort_values('Day', inplace=True)

cast days into categorical variable
cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'
daily_counts['Day'] = pd.Categorical(daily_counts['Day'], categories
sort data
daily_counts = daily_counts.sort_values('Day')
reset index
daily_counts.reset_index(inplace=True, drop=True)

plot data
fig, ax = plt.subplots()
daily_counts[['Day', 'avg(Hourly_Counts)']].plot.bar(ax=ax)
plt.xlabel('Day of the Week')
plt.ylabel('Step Count')
plt.show()

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 11 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

Referring the Yearly trend (image above) from last assignment, we already know that Year
doesn't play a crucial role when looking at average Hourly Count. Plus the data from
2020 has been excluded from predictions, thus I decided to not include this column in
training. Similarily, as Sensor ID (primary key of sensor locations dataset) encompasses
the location, direction as well status of the sensor, I feel we do not need to include any
columns from second dataset.

Considering the column "Time", not only it directly influences the label class but is also
requied to filter data based on given conditions (9 AM to 12 AM). As the data follows 24
hour format and is in numeric form, we simply exclude the hours between 1 and 8.
Similarly we also pick the Year to filter data for training and testing (section 2.3)as per the
assignment requirement.

The columns Day and Month are in String Format, so we would use a StringIndexer to
typecast it into categorical form.

Now we have all three columns as categorical variables but with numeric values. And this
might confuse the machine about their oridinality. Thus we further implement One Hot
Encoding to create Binary Vectors to avoid such a situation.

Lastly we use a Vector Assembler to put together all the features into one column which
would be used to train the model.

2.1.2 Feature Engineering
Now we implement the above stated methodology via code.

To begin with, we filter rows with Time between 9 AM & Midnight and extract the required
columns.

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 12 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

In [15]:

2.2.1 Transformers and Estimators
First we use the transformers StringIndexer, OneHotEncoder and Vector Assembler to
create a new dataframe from the existing one.

Next we use the estimators Decision Tree and Gradient Boosted Tree for predicting data.
At this stage we are focussing on defining these transformers/estimators and not actually
implementing them.

In [16]:

filter data based on Time
df_ped = df_ped.filter(df_ped.Time >= 9)

list of input columns
inputCols = ['Time','Day', 'Month', 'above_threshold']
list comprehension for output columns
outputCols = [x+"_index" for x in inputCols]

inputCols_OHE = [x for x in outputCols if x != 'above_threshold_index'
outputCols_OHE = [x+"_vec" for x in inputCols_OHE]

inputCols_assembler = [x for x in outputCols_OHE] + ['Sensor_ID']

import relevant libraries
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import OneHotEncoder
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml import Pipeline
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.regression import DecisionTreeRegressor
from pyspark.ml.classification import GBTClassifier
from pyspark.ml.regression import GBTRegressor

Transformer 1 - String Indexer
indexer = StringIndexer(inputCols=inputCols, outputCols=outputCols)
Transformer 2 - One Hot Encoder
encoder = OneHotEncoder(inputCols=inputCols_OHE, outputCols=outputCols_OHE
Transformer 3 - Vector Assemble
assembler = VectorAssembler(inputCols=inputCols_assembler, outputCol
Estimator 1 - Decision Tree Classifier
dtc = DecisionTreeClassifier(featuresCol = "features", labelCol = 'above_threshold_index'
Estimator 2 - Decision Tree Regressor
dtr = DecisionTreeRegressor(featuresCol="features", labelCol="Hourly_Counts"
Estimator 3 - Gradient Boosted Tree Classifier
gbtc = GBTClassifier(featuresCol="features", labelCol="above_threshold_index"
Estimator 4 - Gradient Boosted Tree Regressor
gbtr = GBTRegressor(featuresCol="features", labelCol="Hourly_Counts"

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 13 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

2.2.2 Pipeline API
Now that we have defined all the transformers and estimators, we organise them in the
form of sequenced stages via a Pipeline.

In [17]:

2.2.3 Decision Tree Classification
Hyperparameters refers to the settings that can not be learned by the model itself. And
need to be specified by the user for optimal performance. In our case, we talk about the
two most important hyperparameters namely maxDepth and maxBins.

MaxDepth refers to the depth of the tree. And the higher its value, lower would be the
training error but may also lead to oevrfitting. And maxBin refers to the number of bins
used when discretizing continous features. Having a large value for maxBins allows
greater splits and thus fine grained results but significantly increases the computation
cost.

Here we use K Fold cross validation to test an array of maxBin and maxDepth values and
found out 10 to be the optimal value for both while maintaining a manageable run time
cost.

2.3 Preparing Data
We pick entries between the years 2014 and 2018 for training our model and use the
entries for the year 2019 for testing phase. To do so we first filter data based on Year and
put them in separate dataframes.

USE CASE 1
Decision Tree Classifier
pipeline1 = Pipeline(stages=[indexer, encoder, assembler, dtc])
Gradient Boosted Tree Classifier
pipeline2 = Pipeline(stages=[indexer, encoder, assembler, gbtc])

USE CASE 2
Decision Tree Regressor
pipeline3 = Pipeline(stages=[indexer, encoder, assembler, dtr])
Gradient Boosted Tree Regressor
pipeline4 = Pipeline(stages=[indexer, encoder, assembler, gbtr])

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 14 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

In [18]:

Use Case 1 - Classification

2.4.1 Training Models
Now that the data has been split accordingly, we use the Pipelines defined above to learn
from test dataframe and make predictions using test dataframe:

In [19]:

In [20]:

2.4.2 Evaluating Models
To check how our models perform, we print a column wise table to compar ethe
expected labels and the one predicted by our model.

In [21]:

+---------------------+----------+------+
|above_threshold_index|prediction| count|
+---------------------+----------+------+
1.0	1.0	18133
0.0	1.0	9216
1.0	0.0	12908
0.0	0.0	245275
+---------------------+----------+------+

training data
train = df_ped.filter(df_ped.Year >= 2014).filter(df_ped.Year<=2018).
test data
test = df_ped.filter(df_ped.Year == 2019)
caching data
train = train.cache()
test = test.cache()

decision tree
training phase
pipelineModel1 = pipeline1.fit(train)
perform predictions
predictions1 = pipelineModel1.transform(test)

gradient based tree
training phase
pipelineModel2 = pipeline2.fit(train)
perform predictions
predictions2 = pipelineModel2.transform(test)

results from Decision Tree
predictions1.groupBy('above_threshold_index', 'prediction').count().

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 15 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

In [22]:

While the table does give us an overview of correct predictions, we would like to
scrutinise the performance metrics in a little more depth. To begin with, let's have a look
at the AOC or Area Under the Curve:

In [23]:

Well, AOC is defined as the value ranging between 0 and 1 which tells how well can the
model differentiate between the class labels which in our case is above_threhold. The
higher the score, the better. As can be seen from the results above, the Decision tree has
lower AOC (0.69) when compared to that of Gradient Boosted Tree (0.87).

This simply tells us that Gradient Boosted Tree can better explain the differnce between
given labels, while the simpler Decision Tree seems to have considerable overlapping.

Next up, we create a function that takes in the dataframe after predictions and returns
metric values like Accuracy, Precision, Recall and F1 score for the input dataframe.:

+---------------------+----------+------+
|above_threshold_index|prediction| count|
+---------------------+----------+------+
1.0	1.0	10374
0.0	1.0	1913
1.0	0.0	20667
0.0	0.0	252578
+---------------------+----------+------+

areaUnderROC for Decision Tree: 0.6849436670047464
areaUnderROC for Gradient Boosted Tree 0.8675267775433219

results from Gradient Boosted Tree
predictions2.groupBy('above_threshold_index', 'prediction').count().

import evaluator
from pyspark.ml.evaluation import BinaryClassificationEvaluator
evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction"

rename columns to use evaluator
predictions1 = predictions1.withColumnRenamed('above_threshold_index'
predictions2 = predictions2.withColumnRenamed('above_threshold_index'

AOC for Decision Tree
auc_dt = evaluator.evaluate(predictions1)
AOC for Gradient Boosted Tree
auc_gbt = evaluator.evaluate(predictions2)

print(evaluator.getMetricName(), "for Decision Tree: ", auc_dt)
print(evaluator.getMetricName(), "for Gradient Boosted Tree ", auc_gbt

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 16 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

In [24]:

Now we use the function to print performance metrics for both the models.

In [25]:

** Decision Tree **
accuracy: 0.9225165655688329
precision: 0.6630224139822297
recall: 0.584162881350472
f1: 0.621099503339613

** Gradient Boosted Tree **
accuracy: 0.9209195466707759
precision: 0.8443069911288353
recall: 0.33420315067169226
f1: 0.47885893648449046

function to calculate performance metrics
def compute_metrics(predictions):
 # true negative
 TN = predictions.filter('prediction = 0 AND above_threshold_index = 0'
 # true negative
 TP = predictions.filter('prediction = 1 AND above_threshold_index = 1'
 # false negative
 FN = predictions.filter('prediction = 0 AND above_threshold_index = 1'
 # false positive
 FP = predictions.filter('prediction = 1 AND above_threshold_index = 0'

 # calculation logic
 accuracy = (TP + TN)/(TP + FP + FN + TN)
 precision = TP/(TP + FP)
 recall = TP /(TP + FN)
 f1 = (2 * (precision*recall))/(precision + recall)

 return accuracy, precision, recall, f1

dt_output = compute_metrics(predictions1)
print(f"** Decision Tree **")
print(f"accuracy: {dt_output[0]}")
print(f"precision: {dt_output[1]}")
print(f"recall: {dt_output[2]}")
print(f"f1: {dt_output[3]}")

print("\n\n")
gbt_output = compute_metrics(predictions2)
print(f"** Gradient Boosted Tree **")
print(f"accuracy: {gbt_output[0]}")
print(f"precision: {gbt_output[1]}")
print(f"recall: {gbt_output[2]}")
print(f"f1: {gbt_output[3]}")

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 17 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

Looking at the results, both the models seems to have an equivalent accuracy but
considering the imabalanced distribution of training data labels, it's very likely for the
machine to predict everything to be zero. A hypothetical example would be:

I porpose an algorithm which prints 0 irrespective of the features.

This way I am bound to get high accuracy but it does not imply that approach/algorithm
was correct. Thus we look at other metrics like Precision and Recal. And similar to the
last scenario, it is very easy to cheat the reuslts by manipulating the distribution. So to
avoid potential loopholes, I suggest the use of F1 Score.

Analysing the models in consideration, we can say that Decision Tree seems to have
better F1 score (0.62 vs 0.49) and reduces the chance of false predictions. Finally, we
persist this (better) model on to our machine:

In [26]:

2.4.3 Printing Splitting Criteria

In [27]:

Out[27]: {Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='feature
sCol', doc='features column name.'): 'features',
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='labelCo
l', doc='label column name.'): 'above_threshold_index',
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='predict
ionCol', doc='prediction column name.'): 'prediction',
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='probabi
lityCol', doc='Column name for predicted class conditional probabi
lities. Note: Not all models output well-calibrated probability es
timates! These probabilities should be treated as confidences, not
precise probabilities.'): 'probability',
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='rawPred
ictionCol', doc='raw prediction (a.k.a. confidence) column name.')
: 'rawPrediction',
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='seed',
doc='random seed.'): -917841448927836354,
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='cacheNo
deIds', doc='If false, the algorithm will pass trees to executors
to match instances with nodes. If true, the algorithm will cache n
ode IDs for each instance. Caching can speed up training of deeper
trees. Users can set how often should the cache be checkpointed or
disable it by setting checkpointInterval.'): False,
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='checkpo
intInterval', doc='set checkpoint interval (>= 1) or disable check
point (-1). E.g. 10 means that the cache will get checkpointed eve
ry 10 iterations. Note: this setting will be ignored if the checkp
oint directory is not set in the SparkContext.'): 10,
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='impurit
y', doc='Criterion used for information gain calculation (case-ins

pipelineModel1.save('classification_31125301')

pipelineModel1.stages[-1].extractParamMap()

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 18 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

y', doc='Criterion used for information gain calculation (case-ins
ensitive). Supported options: entropy, gini'): 'gini',

 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='leafCol
', doc='Leaf indices column name. Predicted leaf index of each ins
tance in each tree by preorder.'): '',
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='maxBins
', doc='Max number of bins for discretizing continuous features.
Must be >=2 and >= number of categories for any categorical featur
e.'): 100,
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='maxDept
h', doc='Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 l
eaf node; depth 1 means 1 internal node + 2 leaf nodes.'): 10,
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='maxMemo
ryInMB', doc='Maximum memory in MB allocated to histogram aggregat
ion. If too small, then 1 node will be split per iteration, and it
s aggregates may exceed this size.'): 256,
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='minInfo
Gain', doc='Minimum information gain for a split to be considered
at a tree node.'): 0.0,
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='minInst
ancesPerNode', doc='Minimum number of instances each child must ha
ve after split. If a split causes the left or right child to have
fewer than minInstancesPerNode, the split will be discarded as inv
alid. Should be >= 1.'): 1,
 Param(parent='DecisionTreeClassifier_3fb9d13a319d', name='minWeig
htFractionPerNode', doc='Minimum fraction of the weighted sample c
ount that each child must have after split. If a split causes the
fraction of the total weight in the left or right child to be less
than minWeightFractionPerNode, the split will be discarded as inva
lid. Should be in interval [0.0, 0.5).'): 0.0}

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 19 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

2.4.4
As discussed the class imbalance leads to skewed predictions. And to fix that I propose
two methods to improve the performance:

Considering we have ample amount of data, we can try sampling the data with equal
distribution of above_threhold labels. Thus having balanced data (equivalent number of
both labels) in the training phase may allow the model to learn better.

Secondly, we should use Hyperparmeter Tuning to check the best value for our various
paramaters like depth, bins and number of iterations. To find out the best combination,
we must use ParamGridBuilder as manual selection ad checking may take very long. Plus
this tuning must go in parallel with Cross Validation as it will allow the machine to learn
on K number sets and avoids bias.

A code snippet example for the same:

from pyspark.ml.tuning import ParamGridBuilder,
CrossValidator,CrossValidatorModel

from pyspark.ml.evaluation import BinaryClassificationEvaluator

dtparamGrid = (ParamGridBuilder()
 .addGrid(dt.maxDepth, [2, 5, 10, 20, 30])
 .addGrid(dt.maxBins, [10, 20, 40, 80, 100])
 .build())

dtevaluator =
BinaryClassificationEvaluator(rawPredictionCol="rawPrediction")

dtcv = CrossValidator(estimator = pipeline,
 estimatorParamMaps = dtparamGrid,
 evaluator = dtevaluator,
 numFolds = 3)

Use Case 2 - Regression

2.4.5 Training Models
Having completed the Classification Part for above_threshold labels, we moove towards
predicting the Hourly_Count for each record in the test dataframe. Similar to the
previosuly stated process, we beign by training the model and then perform predictions
on test data.

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 20 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

In [28]:

In [29]:

2.4.6 Evaluating Models
To compare the perforance of both the models, we compute the Root Mean Squared
Error and R^2 values for each model:

In [30]:

We know that RMSE is an absolute value and represents Goodness of Fit o our
model. Thus RMSE should be lower while ranges from 0 to 1 and must be higher.

Looking at the results, Decision Tree has lower RMSE and higher when compared to
Gradient Boosted Tree. Thus we conclude that Decision Tree is the better model and we
persist it using the save() function.

!2

!2

!2

Root Mean Squared Error (RMSE) on test data for Decion Tree = 635
.0554253816476
R-squared on test data for Decion Tree = 0.47153750414937
Root Mean Squared Error (RMSE) on test data for Gradient Boosted T
ree = 698.114078107275
R-squared on test data for Gradient Boosted Tree = 0.361378254653
94224

decision tree
training phase
pipelineModel3 = pipeline3.fit(train)
perform predictions
predictions3 = pipelineModel3.transform(test)

gradient based tree
training phase
pipelineModel4 = pipeline4.fit(train)
perform predictions
predictions4 = pipelineModel4.transform(test)

from pyspark.ml.evaluation import RegressionEvaluator

evaluator1 = RegressionEvaluator(labelCol="Hourly_Counts", predictionCol
evaluator2 = RegressionEvaluator(labelCol="Hourly_Counts", predictionCol

rmse1 = evaluator1.evaluate(predictions3)
r1 = evaluator2.evaluate(predictions3)

rmse2 = evaluator1.evaluate(predictions4)
r2 = evaluator2.evaluate(predictions4)

print("Root Mean Squared Error (RMSE) on test data for Decion Tree = "
print("R-squared on test data for Decion Tree = ", r1)
print("Root Mean Squared Error (RMSE) on test data for Gradient Boosted Tree = "
print("R-squared on test data for Gradient Boosted Tree = ", r2)

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 21 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

In [31]:

Section 3 - Clustering

3.1 Jobs Observed

In [32]:

We can see 185 jobs were observed in training the KMeans Clustering. The screenshot is
attahed for reference:

pipelineModel1.save('regression_31125301')

from pyspark.ml.clustering import KMeans

customer_df = spark.createDataFrame([(0,19,15,39),
(0,21,15,81),
(1,20,16,6),
(1,23,16,77),
(1,31,17,40),
(1,22,17,76),
(1,35,18,6),
(1,23,18,94),
(0,64,19,3),
(1,30,19,72),
(0,67,19,14),
(1,35,19,99),
(1,58,20,15)],
['gender', 'age', 'annual_income', 'spending_score'])
assembler = VectorAssembler(
inputCols=['gender', 'age', 'annual_income', 'spending_score'], outputCol
kmeans = KMeans(k=4).fit(assembler.transform(customer_df))

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 22 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 23 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

2/11/21, 6:29 amAssignment-2A - Jupyter Notebook

Page 24 of 24http://localhost:8888/notebooks/Downloads/Assignment-2A.ipynb#

3.2 Data Parallelism
I believe Data Parallelism is adopted in the implementation of KMeans Clustering in
Spark. Wherein the data is split among the processors (2 in our case) then they are
separately clustered in each processor. Lastly the results for each cluster from the
individual processors are combined at the end by a manager node.

In []:

2/12/21, 5:21 pmAssignment-2B-Task1_producer - Jupyter Notebook

Page 1 of 3http://localhost:8888/notebooks/Desktop/sgul0007-2/Assignment-2B-Task1_producer.ipynb#

FIT5202 Assignment 2B - 31125301

Section 1 : Producing the Data
To begin with, we are given two CSV files -

1. Pedestrian data collected by electronic sensors in December 2020
2. Geographic (and other) attributes of each sensor collecting data

Here, we read the first file using a dict reader which returns a list of dictionaries.

Next, we need to send these dictionary records in batches wherein each batch contains
data for 1 specific day. Thus we iteratively run a script to extract records depending upon
the Mdate value. Now this Mdate attribute refers to the Day of the Month which ranges
from 1 to 31 (number of days in December).

Finally, an array of dict-based records for each day is sent to the broker. And this marks
the successful creation of a Kafka Producer. This data will be consumed by a streaming
service defined in another notebook.

In [28]: # import statements
from time import sleep
from json import dumps
from kafka import KafkaProducer
import datetime as dt
import csv

function to read data from file and return it as a list
def readCSVFile(fileName):
 # create empty list
 data_list=[]
 # open file
 with open(fileName, 'rt') as f:
 # read file in a dictionary format
 reader = csv.DictReader(f)
 # traverse through each row
 for row in reader:
 # pick value for required keys and add it to the empty list created above
 data_list.append({'ID':str(row['ID']),'Date_Time':str(row
 'Year':str(row['Year']),'Month':str(row
 'Mdate':str(row['Mdate']), 'Day':str(row
 'Time':str(row['Time']),'Sensor_ID':str
 'Sensor_Name':str(row['Sensor_Name']),
 # return a list of dictionaries
 return data_list

function to publish message to broker
def publish_message(producer_instance, topic_name, data):
 try:

2/12/21, 5:21 pmAssignment-2B-Task1_producer - Jupyter Notebook

Page 2 of 3http://localhost:8888/notebooks/Desktop/sgul0007-2/Assignment-2B-Task1_producer.ipynb#

Publishing records..
Message published successfully. Data :
[{'ID': '3435630', 'Date_Time': '12/01/2020 08:00:00 AM', 'Year':
'2020', 'Month': 'December', 'Mdate': '1', 'Day': 'Tuesday', 'Time
': '8', 'Sensor_ID': '39', 'Sensor_Name': 'Alfred Place', 'Hourly_
Counts': '83'}, {'ID': '3435798', 'Date_Time': '12/01/2020 11:00:0
0 AM', 'Year': '2020', 'Month': 'December', 'Mdate': '1', 'Day': '
Tuesday', 'Time': '11', 'Sensor_ID': '12', 'Sensor_Name': 'New Qua

 try:
 producer_instance.send(topic_name, data)
 print('Message published successfully. Data : \n' + str(data
 except Exception as ex:
 print('Exception in publishing message.')
 print(str(ex))

function to connect to producer
def connect_kafka_producer():
 _producer = None
 try:
 _producer = KafkaProducer(bootstrap_servers=['localhost:9092'
 value_serializer=lambda x: dumps(x
 api_version=(0, 10))
 except Exception as ex:
 print('Exception while connecting Kafka.')
 print(str(ex))
 finally:
 return _producer

if __name__ == '__main__':

 # name of the topic to publish
 topic = 'pedstream'
 # name of the file containing data
 file = 'Streaming_Pedestrian_December_counts_per_hour.csv'
 # importing data from file using function defined above
 cRows = readCSVFile(file)

 print('Publishing records..')
 producer = connect_kafka_producer()

 # loop through each day in the month of december
 for day in range(1,32):
 # create empty list
 data = []
 # traverse through each records
 for row in cRows:
 # check if day matches the upper loop
 if row['Mdate']==str(day):
 # add this records to a list
 data.append(row)
 # call function to publish data to broker
 publish_message(producer, topic, data)
 # send records after 5 seconds
 sleep(5)

2/12/21, 4:31 pmAssignment-2B-Task2_spark_streaming - Jupyter Notebook

Page 1 of 8http://localhost:8888/notebooks/Downloads/sgul0007-2/Assignment-2B-Task2_spark_streaming.ipynb

FIT5202 Assignment 2B - 31125301

Section 2 : Streaming Application using Spark
Structured Streaming
First we import all the required libraries or modules for our application:

In [1]:

2.1 Next we create a Spark Session by configuring the number of cores, application
name and the time zone for our processing.

In [2]:

2.2 Refering the metadata file, we define the schema for the file conatining sensors'
location data.

import required libraries
import os
from pyspark import SparkConf
from pyspark import SparkContext # Spark
from pyspark.sql import SparkSession # Spark SQL
from pyspark.sql.functions import explode
from pyspark.sql.functions import split
from pyspark.sql import functions as F
from pyspark.sql.types import *
from pyspark.ml.pipeline import PipelineModel

set os environment
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages org.apache.spark:spark-streaming-kafka-0-10_2.12:3.0.0,org.apache.spark:spark-sql-kafka-0-10_2.12:3.0.0 pyspark-shell'

to run Spark in local mode with as 2 logical cores
master = "local[2]"
application name to be shown on the Spark cluster UI page
app_name = "FIT5202 Assignment 2B - 31125301"
configuration parameters for Spark
spark_conf = SparkConf().setMaster(master).setAppName(app_name).set(
Using SparkSession to instantitate a SparkContext
spark = SparkSession.builder.config(conf=spark_conf).getOrCreate()
sc = spark.sparkContext
sc.setLogLevel('ERROR')

2/12/21, 4:31 pmAssignment-2B-Task2_spark_streaming - Jupyter Notebook

Page 2 of 8http://localhost:8888/notebooks/Downloads/sgul0007-2/Assignment-2B-Task2_spark_streaming.ipynb

In [3]:

Now load the file into a dataframe variable using the schema defined above.

In [4]:

2.3 Here we want to ingest the data generated by the Kafka Producer. So we set the
topic name and host-address to be same as that of Producer. And create a stream for
incoming data.

In [5]:

2.4 As a general approach to a streaming application, we store the data streamed above
in its raw for using a parquet sink.

In [6]:

In [7]:

from pyspark.sql.types import StructType, StructField, StringType, IntegerType
schema for sensor locations
schema_sensor = StructType([
 StructField('sensor_id', IntegerType(), True),
 StructField('sensor_description', StringType(), True),
 StructField('sensor_name', StringType(), True),
 StructField('installation_date', DateType(), True),
 StructField('status', StringType(), True),
 StructField('note', StringType(), True),
 StructField('direction_1', StringType(), True),
 StructField('direction_2', StringType(), True),
 StructField('latitude', FloatType(), True),
 StructField('longitude', FloatType(), True),
 StructField('location', StringType(), True),
])

df_sensor = spark.read.csv("Pedestrian_Counting_System_-_Sensor_Locations.csv"

topic name
topic = "pedstream"
spark streaming
df = spark \
 .readStream \
 .format("kafka") \
 .option("kafka.bootstrap.servers", "127.0.0.1:9092") \
 .option("subscribe", topic) \
 .load()

persist streaming data
query_file_sink = df.writeStream.format("parquet")\
 .outputMode("append")\
 .option("path", "parquet/pedstream_df")\
 .option("checkpointLocation", "parquet/pedstream_df/checkpoint"
 .start()

stop query
query_file_sink.stop()

2/12/21, 4:31 pmAssignment-2B-Task2_spark_streaming - Jupyter Notebook

Page 3 of 8http://localhost:8888/notebooks/Downloads/sgul0007-2/Assignment-2B-Task2_spark_streaming.ipynb

2.5 As we mention raw data, we want to transform the attributes to specific data types
like datetime and integer so that we can process the same. Thus we refer the metadata
and convert each column into its desired format. So we pick the key and value columns
and transform them into string type:

In [8]:

We crosscheck the transformation by printing the schema:

In [9]:

2.6 Now we use the metadata file to create a schema.

Note: The data as published by producer is in string format. So we define each attribute
as StringType for bug free ingestion and later typecast them.

In [10]:

Hence the schema is used to import the data as json array from the broker.

In [11]:

Again we cross check the structure of our dataframe:

root
 |-- key: string (nullable = true)
 |-- value: string (nullable = true)

df = df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")

df.printSchema()

schema for December data
schema_ped = ArrayType(StructType([
 StructField('ID', StringType(), True),
 StructField('Date_Time', StringType(), True),
 StructField('Year', StringType(), True),
 StructField('Month', StringType(), True),
 StructField('Mdate', StringType(), True),
 StructField('Day', StringType(), True),
 StructField('Time', StringType(), True),
 StructField('Sensor_ID', StringType(), True),
 StructField('Sensor_Name', StringType(), True),
 StructField('Hourly_Counts', StringType(), True)
]))

df = df.select(F.from_json(F.col("value").cast("string"), schema_ped

2/12/21, 4:31 pmAssignment-2B-Task2_spark_streaming - Jupyter Notebook

Page 4 of 8http://localhost:8888/notebooks/Downloads/sgul0007-2/Assignment-2B-Task2_spark_streaming.ipynb

In [12]:

As we are dealing with JSON Array, each published batch consists of a list of records and
is thus ingested in a nested dataframe. Thus we manually flatten it for further processing.

In [13]:

After flatteing, we rename the columns as:

In [14]:

root
 |-- parsed_value: array (nullable = true)
 | |-- element: struct (containsNull = true)
 | | |-- ID: string (nullable = true)
 | | |-- Date_Time: string (nullable = true)
 | | |-- Year: string (nullable = true)
 | | |-- Month: string (nullable = true)
 | | |-- Mdate: string (nullable = true)
 | | |-- Day: string (nullable = true)
 | | |-- Time: string (nullable = true)
 | | |-- Sensor_ID: string (nullable = true)
 | | |-- Sensor_Name: string (nullable = true)
 | | |-- Hourly_Counts: string (nullable = true)

df.printSchema()

to flatten
df = df.select(F.explode(F.col("parsed_value")).alias('unnested_value'

df_formatted = df.select(
 F.col("unnested_value.ID").alias("ID"),
 F.col("unnested_value.Date_Time").alias("Date_Time"
 F.col("unnested_value.Year").alias("Year"),
 F.col("unnested_value.Month").alias("Month"),
 F.col("unnested_value.Mdate").alias("Mdate"),
 F.col("unnested_value.Day").alias("Day"),
 F.col("unnested_value.Time").alias("Time"),
 F.col("unnested_value.Sensor_ID").alias("Sensor_ID"
 F.col("unnested_value.Sensor_Name").alias("Sensor_Name"
 F.col("unnested_value.Hourly_Counts").alias("Hourly_Counts"
)

2/12/21, 4:31 pmAssignment-2B-Task2_spark_streaming - Jupyter Notebook

Page 5 of 8http://localhost:8888/notebooks/Downloads/sgul0007-2/Assignment-2B-Task2_spark_streaming.ipynb

In [15]:

Finally the data is transformed into the desired structure but still requires the type
conversion. So we look up the metadat file for each column:

In [16]:

2.6 Following the assignment specification for the pretrained Model, we pick the
columns:

1. Sensor ID
2. Date_Time
3. Hourly_Counts

to create a new dataframe.

In [17]:

Yet, the dataframe needs addtional attributes derived from the next_date column to be
fed into the given Model.

In [18]:

root
 |-- ID: string (nullable = true)
 |-- Date_Time: string (nullable = true)
 |-- Year: string (nullable = true)
 |-- Month: string (nullable = true)
 |-- Mdate: string (nullable = true)
 |-- Day: string (nullable = true)
 |-- Time: string (nullable = true)
 |-- Sensor_ID: string (nullable = true)
 |-- Sensor_Name: string (nullable = true)
 |-- Hourly_Counts: string (nullable = true)

df_formatted.printSchema()

df_formatted = df_formatted.selectExpr("CAST(ID AS INT)", \
 "TO_DATE(CAST(UNIX_TIMESTAMP(Date_Time, 'MM/dd/yyyy hh:mm:ss a') AS TIMESTAMP)) AS Date_Time"
 "CAST(Year AS INT)", "CAST(Month AS STRING)"
 "CAST(Time AS INT)", "CAST(Sensor_ID AS INT)"

df_next = df_formatted.selectExpr("Sensor_ID",\
 "date_add(to_date(Date_Time,'MM-dd-yyyy'),cast(1 as int)) as next_date"
 "Time",\
 "Hourly_Counts AS prev_count")

df_final = df_next.selectExpr("Sensor_ID" ,\
 "weekofyear(next_date) AS next_day_week"
 "dayofmonth(next_date) AS next_Mdate",\
 "dayofweek(next_date) AS next_day_of_week"
 "Time",\
 "prev_count")

2/12/21, 4:31 pmAssignment-2B-Task2_spark_streaming - Jupyter Notebook

Page 6 of 8http://localhost:8888/notebooks/Downloads/sgul0007-2/Assignment-2B-Task2_spark_streaming.ipynb

2.7 Now the data is in the form as required by the Model but we only need predictions for
sensor activity after 9 AM. Thus we filter the rows accordingly.

In [19]:

Finally, the model is loaded into our Jupyter Notebook as :

In [20]:

And the model is fit on the dataframe created in the last to last cell. The predictions from
the same are persisted in the parquet format.

In [21]:

In [22]:

In [23]:

2.8a As we want the number of hours for each sensor where the step count was greater
than 2000, we first discard the rows with count less than 2000.

In [24]:

Now we group by the ID and Day and use count to retrieve the total number of hours.

In [25]:

In [32]:

remove records before 9 am
df_final = df_final.filter(df_final.Time >= 9)

model = PipelineModel.load('count_estimation_pipeline_model/')

predict data using model
predictions = model.transform(df_final)

perist the predictions
query_file_sink = df_final.writeStream.format("parquet")\
 .outputMode("append")\
 .option("path", "parquet/pedstream_predictions")\
 .option("checkpointLocation", "parquet/pedstream_predictions/checkpoint"
 .start()

query_file_sink.stop()

predictions_filtered = predictions.filter(predictions.prediction>2000

windowedCounts = predictions_filtered \
 .groupBy("Sensor_ID", "next_Mdate")\
 .agg(F.count("Sensor_ID").alias("total"))\
 .orderBy("Sensor_ID")\
 .select("Sensor_ID","next_Mdate","total")

query = windowedCounts \
 .writeStream \
 .outputMode("complete") \
 .format("memory") \
 .trigger(processingTime='5 seconds') \
 .queryName("tableName")\
 .start()

2/12/21, 4:31 pmAssignment-2B-Task2_spark_streaming - Jupyter Notebook

Page 7 of 8http://localhost:8888/notebooks/Downloads/sgul0007-2/Assignment-2B-Task2_spark_streaming.ipynb

In [30]:

In [31]:

2.8b As we have already filtered the rows with step count more than 2000, we create
another 2 dataframes which just has :

1. Sensor ID as key and Predicted Step Count as Value
2. Sensor ID as key and location co-ordinates as Value

And join them to create a stream to be written to Kafka.

In [36]:

In [37]:

This combined stream with an inner join is sent to Kafka with a new topic name
"predictionStream".

+---------+----------+-----+
|Sensor_ID|next_Mdate|total|
+---------+----------+-----+
1	25	3
1	20	8
1	22	7
1	23	7
1	21	8
1	24	5
2	22	7
2	21	7
2	20	8
2	25	4
2	24	5
2	23	6
4	22	8
4	24	12
4	23	7
4	20	12
4	21	10
4	25	7
4	19	5
5	22	6
+---------+----------+-----+
only showing top 20 rows

spark.sql("select * from tableName").show()

query.stop()

predictions_df = predictions_filtered.selectExpr("CAST(Sensor_ID AS STRING) AS key_pred"
location_df = df_sensor.selectExpr("CAST(Sensor_ID AS STRING) AS key_loc"

joined_df = predictions_df.join(location_df,F.expr("""key_pred == key_loc"""
 .selectExpr("key_pred AS key","value_loc AS value")

2/12/21, 4:31 pmAssignment-2B-Task2_spark_streaming - Jupyter Notebook

Page 8 of 8http://localhost:8888/notebooks/Downloads/sgul0007-2/Assignment-2B-Task2_spark_streaming.ipynb

In [40]:

In [41]:

ds = joined_df \
 .selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") \
 .writeStream \
 .format("kafka") \
 .option("kafka.bootstrap.servers", "localhost:9092") \
 .option("checkpointLocation", "parquet/pedstream_df/checkpoint")\
 .option("topic", "predictionStream") \
 .start()

query.stop()

2/12/21, 4:22 pmAssignment-2B-Task3_consumer - Jupyter Notebook

Page 1 of 132http://localhost:8888/notebooks/Downloads/sgul0007-2/Assignment-2B-Task3_consumer.ipynb#

FIT5202 Assignment 2B - 31125301

Section 3 - Consuming Data using Kafka
In this notebook we consume the data from Kafka Stream and display the sensor
locations on a map. To do so, we first install the library Folium which has been
commented out for now.

In [1]:

Once the libarary is installed we configure a consumer to retrieve data from the Stream,
process the messages published in each batch and then plot them on a map.

In [1]:

!pip install folium

import required libraries
from time import sleep
from kafka import KafkaConsumer
from json import loads
import datetime as dt
import folium

topic name
topic = 'predictionStream'

function to subscribe to broker
def connect_kafka_consumer():
 _consumer = None
 try:
 _consumer = KafkaConsumer(topic,
 consumer_timeout_ms=10000, # stop iteration if no message after 10 sec
 auto_offset_reset='latest', # \to consume latest available message
 bootstrap_servers=['localhost:9092'
 api_version=(0, 10))

 except Exception as ex:
 print('Exception while connecting Kafka')
 print(str(ex))
 finally:
 return _consumer

function to process incoming stream
def consume_messages(consumer):
 # create empty list
 lat, long = [], []
 print('Waiting for messages')
 # loop through each message in batch
 for message in consumer:
 # extract the location co-ordinates
 data = message.value.decode('ascii').split(',')

2/12/21, 4:22 pmAssignment-2B-Task3_consumer - Jupyter Notebook

Page 2 of 132http://localhost:8888/notebooks/Downloads/sgul0007-2/Assignment-2B-Task3_consumer.ipynb#

Waiting for messages

Make this Notebook Trusted to load map: File -> Trust Notebook++
−−

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

Make this Notebook Trusted to load map: File -> Trust Notebook++
−−

 data = message.value.decode('ascii').split(',')
 # add longitude and lattitude to separate lists
 lat.append(float(data[0][1:]))
 long.append(float(data[1][:-1]))
print(lat,long)

 # plot on map if more than 10 co-ordinates
 if len(lat) > 10:
 # intiate an empty map
 m = folium.Map(location=[20,0], zoom_start=2)
 # add all co-oridates in list to map one by one
 for i in range(0,len(data)):
 folium.Marker([lat[i], long[i]]).add_to(m)
 lat.pop()
 long.pop()
 # print map
 display(m)

if __name__ == '__main__':

 # sunscribe to broker
 consumer = connect_kafka_consumer()
 # process and plot the incoming data
 consume_messages(consumer)

FIT 5202 Assignment 2B Feedback Sheet
Student Name: SIMRAN SINGH GULATI

Marked By: David C.

Part B: Building Streaming applications

Tasks Criteria Yes Partial No Comments

1 Producing the data

Read data from file

Create producer

Extract each day's data

All sensor ids present in each batch

Data sent in String format

Data being sent every 5 seconds

2.1 Spark Session
SparkSession using SparkConf, with two
cores, appropriate name, and spark.sql.
session.timeZone

2.2 Load sensor location data

Define sensor location dataset schema
correctly

Sensor location CSV file loaded using
schema

2.3 Ingest streaming data Streaming count data load from Kafka

2.4 Persist raw streaming data
Persist the raw streaming data into
parquet file sink

2.5 Transform streaming data
Value transformed properly accordingly
metadata file

2.6 Prepare data for ML prediction

Create "next_date" column correctly

Create "next_Mdate" column correctly

Create "next_day_week" column correctly

Create "next_day_of_week" column
correctly

- First day of week should be Monday, if using
dayofweek function, need to do more transformation
for this

Rename "Hourly_Count" column

2.7 Predict next day hourly counts

Load machine learning models

Predict next day's hourly counts

Persist the prediction result in parquet file
sink

2.8a Monitor above threshold
sensors daily

Filter the rows

Groupby Sensor and time window

Get the number of hours

Output the streaming result to notebook

2.8b Output prediction to Kafka

Filter the rows

Join the stream based on sensor ID

Create value column for writing to Kafka

Write the stream back to Kafka sink
(instead of using Kafka producer)

3 Visualise location on Map

Create consumer

Read data from Kafka (from Q 2.8b)

Extract the location of each data point

Create the plot showing the sensor
location on a map

Continuously update the plot for every
new batch of data

- Implementation does not allow to update the plot as
batch of data arrives

Qualitative Aspect for Notebook

Organization of tasks in jupyter notebook
Adherance to python standards
Use of appropriate comments,
documentations, code reusability, output
readability, reference

Interview Satisfatory answers for interview questions Excellent Understanding

Final Grade
Late
Submission 0

HD

